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SECTION I

j INTRODUCTION

1. BACKGROUND

As is the care with any newly developing technological area,

image processing has tended to evolve in an ad hoc manner. There

has been little or no effort at standardization of definitions,

structural notation, algorithm specification, terminology and

methodology. An important first step in the direction of

standardizazion is the development of a uniform underlying

mathematical structure for the expression of image processing

algorithms.

If one surveys the literature, he at once recognizes the

disparate manner in which algorithms are specified. It is

extremely difficult to recognize procedures which are essentially

the same but are being presented by two different authors.

Moreover, the lack of any underlying set of iundamental image

processing operations (at a low level) makes optimization and the

reduction of complexity essentially impossible. It is as if one

attempts to proceed through algebra and calculus without any

urderstanding of the basic operations of arithmetic and the laws

pertaining to these operations.

Because of the present chaotic state of image processing

algorithm specification, the need for a study of the underlying

mathematical operations is apparent. The problem is threefold:

a. The criteria that an underlying set of operations must

a satisfy must be delineated.

b. A suitable fundamental collection of low level operators



must be found.

C. The mathematical structure of the algebra based upon the

.fundamental operators raust be investigated and the entire

structure must be placed wi.thi.n the appropriate mathematical

framework. It is the int'ent of the current effort toA

accomplish the aforementioned tasks.

2. THE PROJZCT

This report represents the culmination of approx~imately one

year's effort to find an imaging algebra. Though much

developmental work remains to bc done, the skeleton of a

satisfactory structure appears to have been found. it is the

intent of this report to define, explain, illustrate and

ciemonst:ate the capabilities of the proposed algebraic structure.

Several germane attributes of the proposed structure

are:

a. mathematical and computer implementation of the

basis

b. range and domain induced basic operators

C. basic projection operators

d. spanning capability of the basis

e. image macro operators

f. ordered basic and macro operators by complexity.

2



The attributes represent, in compact form, those properties

that were identified in the project an being critical to the

eventual success of the system.

3



SECTZON 11

FTUDAMTAL OPERATORS IN THE Dl&GZ ALGMrBM

1. BASIS

A set of criteria that a collection of elemental operation,

should satisfy in order to qualify a! a candidate for a basis

that will underlie the development of an image processing algebra

has been articulated. The primary role of a basis is to serve as

a construct to categorize thinking at a certain level. Once such

a categorization is given, uniformity of structure results. The

ability to communicate is enhanced and the development of

linguistic models is made possible. Moreover, there is no loss

:f freedom, since, as the category of thinking gets broader, the

e:.isting definition of the basis can be concomitantly broadened

t. accommodate the novel concepts. Should a particular field

encompass several seemingly disjoint transformation types, as

does image processing, a level approach to basis construction can

be taken. Each level may have its own mini-basis and the basis

of the entire collection of operations may be taken as a union of

the individual mini-bases. In terms of an image processing

algebra, there are various levels to be considered. Therefore,

it is appropriate to take a modular approach.

Essentially, there are several criteria the overall basis

should satisfy. It should be representable. Important image

operations should be definable under function composition using

the elemental operationt of the basis. This is the so-called

spanning capability of the basis. Those algorithms for which

there e-ists a basis representation will be part of the resulting

system. If the basis is to have good spanning characteristics,

these representable algorithms must form a class which contains

4



the vast majority cf the e:.:isting procedures.

t The addition of new and important operations might require

an e:x:pansion of the basis.

% A second criterion the basis should satisfy is that of

manipulability. It should be convenient to use in that high level

functions and racro-functions are for the most part readily

obtainable from the basis elements. It should be modular and

also provide views at various levels. There should also be a

general simplicity so that the underlying operations are easily

visualized and understood.

Nex:t, the basis should be efficient. The desire is for

elementary ope'-ations, though not necessarily the most

elementary. .The overall basis should be space-time efficient and

thereby provide a pragmatically functional system. It should

support a collection of macro-operators from which the varied

imaging operations can be expressed. Although the basic

operaLors may not be independent of one another in a strict

mathematical sense, needless redundancy must be avoided. In a

sense, this last criterion embodies the essential thinking of the

Image Processing Language Program: The ultimate goal is not a

system which is minimal from a strictly logical perspective, but

one that provides a structured framework for the practical

e:-:pression of useful algorithms.

2. IMAGE ALGEBRA CRITERIA

A set of criteria that a mathematical structure should

satisfy in order to qualify as a candidate for an image

processing algebra has been ascertained. From a rigorously

logical point of view, the image algebra itself is mainly

determined by the choice of basis. Nevertheless, it is useful to

5



specifically articulate those properties which are desirable for

the algebraic system as a whole. The image algebra must satisfy

zertain heuristic conditions in order to serve as the supporting

structure for image processing. There are, in fact, many

different bases which lead to the same algebra. Therefore, while

there is interplay between the basic criteria and the algebraic

criteria, they are to some extent ex:clusive. As a result, the

desirable properties for an imaging algebra need to be treated

separately.

The algebra must be effective and efficient. It is

effective to the e:*:tent that it enables autonomous target

detection and classification algorithms to be represented and

developed.

Necessary to a pratical effectiveness is simplicity and

clarity; the algebra must be accessible to those who desire to

use it. Its efficiency depends upon the extent to which it

allows for algorithms to be developed in a favorable fashion with

respect to cost and resources. It must allow for the ready

exploitation of the parallelism which is inherent in so many

imaging algorithms.

The algebra should unify many typed criteria. It should

serve as a vehicle for bringing together the many diverse areas

of image processing through the utilization of precise

specifications.

The imaging algebra should be at once expandable and robust.

E.:pandability requires that there be a capability to delete,

insert or modify operators. Robustness requires that the schema

should have little or no variation with changes in operators,

types or constraints. Moreover, the formalism must be adaptive

to changes due to advances in .nathematics, in the characteristics

of imaging sensors and in the architecture of processors and

6



memory elements.

The imaging algebra structure should support object oriented

design. This requires it to be programmably transportable. It I
should be an easy task to go from operators in the algebra into
code for most machines. The framework should also support a

disciplined programming style with various levels of abstraction.

It should lead to brevity, clarity, modularity and concinnity.

Certainly all of the preceding conditions cannot be

satisfied in their entirety. Nonetheless, they can serve as

guidelines to which the construction of a useful and

comprehensive imaging algebra might aspire.

3. TIH ELEMENTAL OPVATORS

The most essential property of any set of fundamental

operators, or basis, in an imaging algebra is its spanning

capability, that is, the ability to serve as a set of elemental

operations from which image processing algorithms can be

constructed. Without a good spanning capacity, a basis, and hence

the resulting imaging algebra, would fall short, no matter how

excellent its other characteristics. The proposed basis has the

desired spanning capability while at the same time being composed

of operations which are both simple and natural.

In order to appreciate the power and simplicity of the

proposed basis, it is important to recognize that the

construction of a satisfactory imaging algebra requires at the
outset the exposure of the structures that underlie the

operational specification of image processing algorithms. As

with most mathematics, these primitive structures tend to be

quite simple. In general, the end product of mathematical

reasoning can be elaborate and difficult for the non-e:pert to

"7



penetrate; however, the premises from which the reasoning begins

are usually not overly comple:.:. In the case of the proposed
imaging algebra, its structure must allow for the development of

mrost current and (hopefully) tuture imaging transformations.

These may ultimately prove to be of a high order of

comple:.:ity; nevertheless, they must spring from some low level of

primitives. These, in turn, will be a by-product of the

supporting mathematical structures upon which the operations are

based.

While the preceding remarks tend to be philosophical in

nature, once the structural particulars of imaging algorithms are

discovered, they lead directly to the proposed basis. A digital

image defined herein is a partial function on ZxZ into the reals,

that is, it is a function whose domain is a subset of Z:-:Z and

whose codomain is the real number system R. The domain is the extent and

codomain is the grey-scale of an image. The set of all images will be

denoted by X. It is mathematically natural to look within the structures of

ZxZ and R to find the primitive operations of image processing. Both ZxZ and

R are extremely rich and well-studied mathematical entities. Each has an

extensive structure from which to draw. The proposed basis was developed by

drawing upon those domain (ZxZ) and codomain (R) structural properties which

play a role in digital image procesing. As occurs through mathematics, these

lead at once to corresponding properties (or, in this case, operations)

within the new structure which they together induce. Therefore, there

naturally arises a set of domain induced (from ZxZ) operations and a set of

codomain induced (from R) operations. In a sense, one might say that these

are there to be found. For a succesful image algebra, one needs to select

those operations which are required for the convenient representation of

digital imaging transformations.

8



It must be understood that while the precZeding comments

prov.K-de a natural approach to the basis selection problem, they

do not provide a deterministic methodology. Pragmatic modelling

decisions must be made. Not only does one have to search the

literature to see what is going on, one must recognize that

different images can have different domains within ZxZ. The

decision as to how to proceed when, for ex.ample, one desires to

add two images with different domains must be made in a heuristic

manner. In making such decisions for the proposed basis, an

att.empt has been made to define the elemental operations in a way

which reflects the manner in which the induced operations are

most used in practice. Fortunately, it turns out that in every

instar~ce that has come to attention, other natural choices for

the induced elemental operations are derivable as terms in the

algebra or as Macro-Operators from the chosen basis set. These

macro-operators are given in a later section along with a

rigorous discussion of the inducement process.

TABLE 1. FUNDAMENTAL OPERATORS IN IMAGE ALGEBRA

I Addition0
II Multiplication0

Xii Maximum

IV Division0

V Translation T

VI Rotation N

VII Reflection D

VIII Domain Extractor K

Ix Parameter Extractor G

X Existential Operator E

4. SPECIFICATION OF OPERATORS

The first four fundamental operators to be introduced are

range induced, and they include addition, multiplication, maximum

9



and division. The next three operations are translation,

rotation, and reflection. They alio take digital images into

digital images; however, they are domain induced. The final

three operaticns in the basis do not take images into images.

They include the domain extraction operation, which takes an

image and returns a subset of ZxZ, the parameter extraction

operation, which maps an image into the reals, and the

e:.:istential operation, which is used in creating an image.

An image is a real-valued mapping defined on a subset of the

integral lattice ZxZ. Symbolical.y, an image is a mapping

f: A--R, where A C Z:Z. We also employ the customary notation RA

for the class of all such mappings, f fran A into R. Note that for the null

set 0 c Z xZ, we obtain the so-called rnull image. It has an emty domain.

Aa for the collection of all images, we denote this class by X and

X U RA
ACZXZ

Insofar as a particular grey value of an image f e RA is

concerned, this is denoted by f(i,j), where (i,j) e A c ZxZ. The

first element of the pair, i, gives the position on the x-axis,

whiie the second, j, gives the position on the y-axis.

a. Addition (Range Induced). Since each pixel in the

domain of an image has a grey value which is an element of R, the

real number system, and since there is a natural addition (+) in

R, there is an induced addition defined as a binary operation on

images. This image addition is denoted byQ and is a basis

operation. For each pixel in the intersection of the input

domains, the output image has the arithmetic sum of the input

grey values at that pixel. For a pixel which lies in one of the

input domains but not both, the decision has been made to leave

its grey value unchanged. A similar decision has been made



regarding the mu .tiplication operator and the maximum operator,

each of which will be -onsidered in turn. We define

D : X : X -4 X as follows:

If the domain of f is A and the domain of g is B, then the

domain of fGg is A U B and

rf(:,y) (:,y) E A - B
(fQg) = g(x,y) (:,y) e B - A

•f ~y) + g(x'y) (ex,y) E A n B

b. Ilultiplication (Range Induced). Similar reasoning as

given in the addition operation is applied to the natural

multiplication (.) in R. The result is a pi:-:elwise induced

multiplication operation on pairs of input images. For a pixel

in the intersection of the domains of the input images, the

corresponding grey values are multiplied. On the other hand, the

grey value of a pi:-:el which lies in only one domain of the input

images is left unchanged.

Hence we define the binary operator

S: X - X -+ X , where the operands are images and the output

is also an image, as follows:

Let the domain of f be A and the domain of g be B. Then the

domain of f (g is A U B and

f(,y) (:,y) e A - B
(f g) (.-,y) = (:,y) (:,y) E B - A

f y) gg(x,y) (x,:y) e A r) B

c. Maximum (Range Induced). Given two real numbers in R

there is a natural order operation called maximum. Simply

stated, for two real numbers y and z, y v z is either y, z or

their common value, depending respectively upon whether y is

greater, z is greater or they are equal. This naturally induces

11



a pi::elwise ma:.:imum on the intersection of two input domains.

Once again, the heuristic determination has been made to leave

the input images unaltered off the intersection. The operation

is denoted by®2).

We define (2) X X -* X, where the domain of f

is A and the domain of g is B, then the domain of

f Qg is A tj B and

x,y) (:,y) E A - B
(fGg) (:,y) = (y) ,y) E B - A

x,y) v g(x,y) (x,y) e A r) B

d. Division (Range Induced). Each grey value z which is

not zero has a reciprocal grey value l/z. Hence there is a

natural image operation, called division, which replaces each

nonzero grey value by its reciprocal. It is denoted by

(. Since in R the reciprocal of zero is undefined, it has

been decided that the division operation should leave the output

image undefined at any pixel for which the input image has grey

value zero.

Consequently, ( z X -4 X, where if there is a zero pixel in

the input image then the output image has a smaller domain than

the input.

Specifically, (Gf) (xy) = l/f(x,y) if f(x,y) * 0 and is

undefined if f(x,y) = 0. When the division is preceded by a

multiplication operator®, we shall omit®

e. Translation (Domain Induced). Given a position vector

in a two dimensional space, denoted by (m,n), the vector addition

between (m,n) and another vector (i,j) yields a new position

vector (m+i,n+j). Geometrically, the original position is moved

over (.-. direction) i units to the right and up (y direction) j

units. This position operation induced the translation operation

12



on images. The elemental operator T moves an image over and up,

while leaving grey values unchanged. Notationally, T(fi,j) or

fi- is used to indicate the image obtained by moving it over

units and up j units. It is this domain induced operator T which

has provea to be invaluable in the exploitation of the natural

parallelism which exists in many imaging operations. We deiine

TX: .Zh Z -+ X, where T is the trinary operator defined by:

(T (f, i,j)) (:ý,y) - f (x-i, y-j)

f. Nirety Degree Rotation (Domain induced). A set of

ordered pairs in the two dimensional lattice ZxZ can be rotated

90' in the counter-clockwise direction. This at once induces a

900 rotation operation N. The grey values of the input images

are left unchanged and the image is simply rotated.

Consequently: N : X -ý X is (N(f)) (x,y) - f (y, -x).

g. Diagonal Reflection (Domain Induced). This operation

is similar in origin to the 90° rotation, except that the image

is flipped out of the page around a 135* line through the origin.

This operation is denoted by D. D : X -+ X, by (D(f)) (x,y) =

f(-y,-x). Hence D makes row pixels become column pixels (and

conversely) by rotating the image 1800 out of the page about the

-45° axis.

h. Domain Extractor. The domain of an image is a subset

of Zx:Z. It is natural and convenient to consider the operation K

which takes an image and yields a subset of ZxZ, that subset

being the domain of the image. Hence K : X -4 2zxz, and for f in

RA, A C ZxZ, K(f) = A.

i. Parameter Extractor. Each pixel in the domain of an

image has a given grey value. It is often necessary to read out

that value, which is an element of R, the codomain. It turns out

13



I
that it is only necessary to assume the ability to extract the

grey value at the origin pixel. Others can be found first

applying the appropriate translations. This basis operation

yields the grey value at the origin pi:.:e± for a liven input

image. The comple:*:ity of the rigorous definition results from the

desire to have this operator defined even if the grey value at

the origin is undefined. In that event, the closest grey value

is chosen. This latter stipulation is essentially just a

mathematical formality since it is possible to move any grey

value to the origin by translation. The operator G extracts the

grey value of the pixel which is closest to the origin in

Euclidean distance and at the smallest angle from the abscissa.

Hence G: X -- R, where

f(0,0) when f e RA and (0,0) e A
G(f) = when f -0

f(i,j) otherwise, where tan-1 (j/i)
is minimized for minimum
i2 + j2.

j. Ezistential Opezatar. Somewhat opposite of the domain

finding operation and parameter extraction operation is the

Existential Operation E. This operator is a binary operator used

in manufacturing an image. The inputs of this operator are a

grey valu- t and a subset A of Z:Z. The output is a constant

image with domain A such that every pixel in A has grey value t.

Such an image is denoted by tA ; -.e., tA(i,j) - t if (i,j) e A

and is undefined otherwise. Thus ws define E - R 22xz--4X where

t e F and A e 2zxz , E(t,A) - tA The afozementioned

operations form the proposed basis. Each taken singularly is

very simple in its structure. Yet taken as a collection, they

possess a pc'werful spanning capability insofar as the following

transformation types are concerned: imaae to image, image to

parameter, and image to set. Both their simplicity and their

power result from the inducement methodology which brings them to

light.

14



SECTION III

CONCLUSION

This report represents the culmination of approximately

one year's effort to find an imaging algebra. Though much

developmental work remains, the skeleton of a satisfactory

structure appears to have been found. An algebraic structure

in the form of a many sorted algebra has been presented to

describe operations used in image processing. This system
involves ten fundamental operations. The germane attributes

of this structure follow:

a. The ten underlying basic operators are elemental

from the perspectives of both mathematics and machine

implementation.

b. Seven of the basic operators are either range induced,

or domain induced, thereby, r6ndering them both operationally

and structurally familiar.

C. Two of the operators are projections, one extracting

the domain of an image and the other ailowing the extract-

ion of the range. The tenth operator, the existential

operator, allows the formation of an image. These three

operators provide for extensive data structure manipulation

and for easy movement among the sorts within the image

algebra.

d. An already well-developed collection of image algorithm

oriented- macro-operators has been developed. Structural
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evaluation of these macros is in progress. The macros
provide a workable vehicle for the transposition of ex:isting

image processing algorithms into the algebra.

e. The spanning capability of the proposed basis is

e::tensive; indeed, not one strictly digital algorithm has

yet been presented which is not e:pressable in terms of the

basic ten operators.

f. By telescoping the basic operators and the macros,

arranged in some sort of order of increasing complexity, it

should be possible to develop an image processing language

in which the user has access at all levels down to the basic

set of ten. The resulting language will make full

availability of the inherent parallelism within imaging

algorithms.

The preceding attributes of the algebra represent, in

ccmpact form, those properties that were identified early in the

project as being critical to the eventual success of the system.

As a consequence, we believe the project has, to this date,

attained or surpassed all of its original goals.

4
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APPfIMZX A

PEASI I ACTYVZT.ZS

1. COSOLIDATION/ClASSFI.•CATZXOI/DZSCRZPTION

A list has been compiled of e:x:isting image processing

transforms, image measurement techniques and feature vector

analysis techniqups. An attempt has been made to include

numerous methods cccurring in the current literature and in every

known te:-:t on imriage processing. The names of over a hundred of

the operators in this listing appear in Appendix D of this

Izcument.

The transforms, measurement techniques and feature vector

analysis techniqves in the aforementioned list have been

classified according to the nature of their functions.

Cate-ories in the classification "scLema include image

enhancement, edge detection, statistical measurement, feature

vector analysis, segmentation, image coding, image compression,

clustering, data structure labeling, image reconstruction, noise

reduction, image texture modeling, thinning, decomposition

techniques, classification, geometric parametrization, grey level

distribution, filtering/smoothing, normalization, geometric esti-

mation, connectivity criteria, size and shape description and

digitalization.

A brief characterization of each transform, measurement

tec. - , and feature vector analysis technique has been

prepared. The characterization includes a description of the

operator's effectiveness as well as its deficiencies. Where
U

alternative versions or equivalent transforms exist, each version

has been identified, often along with specific advantaqes and

disadvantages.
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2. IDENTIFICATION/DEFrNITION OF ELEDUNTAL OP1IZONS

Common elemental operations composing the collected

transforms and measurement techniques have been investigated and

identified, or defined.

Collections of elemental operations that might serve as a

bases to generate the image processing transforms and measurement

technques described above have been identified. A description of

useful elemental operations will be provided below.

3. IDENTIFICATION/DESCRIPTION/EVALUATION Or MATHIaTZCAL STRUCTUZS

A set of criteria that a collection of elemental operations

should satisfy in order to qualify as a candidate for a basis

that will underly the development of an image processing algebra

has been articulated. The primary role of a basis is to serve as

"a construct to categorize thinking at a certain level. Once such

"a categorization is given, uniformity of structure results. The

ability to communicate is enhanced and the development of

linguistic models is wlade possible. Moreover, there is no loss

of freedom, since, as the category of thinking gets broader, the

e:x:isting definition of the basis can be concomitantly broadened

to accomodate the novel concepts. Should a particular field

encompass several seemingly disjoint transformation types, as

does image processing, a level approach to basis construction can

be taken. Each level may have its own mini-basis and the basis

of the entire collection of operations may be taken as a union of

the individual mini-bases. In terms of an image processing

algebra, there are various levels to be considered. Therefore,

it is appropriate to take a modular approach.
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Essentially there are several criteria the overall basis

6 should satisfy. First it should be representable. Important

image -operation.ý should be definable under function composition

using the ele.Aental operations of the basis. This is the

so-called spanning capability of the basis. Those algorithms for

which there exists a basic representation will be a part of the

resulting system. If the basis is to have good spanning

characteristics, these representable algorithms must form a class

whic-h contains the vast majority of the existing procedures. The

addition of new and important operations might require an

ex.pansion of the basis.

A seconid criterion the basis should satisfy is that of

manipulability. It should be convenient to use in that high level

functions and macro-functions are for the most part readily

obtainable from the basis elements. It should be modular and

also provide views at various levels. There should also be a

general simplicity so that the underlying operations are easily

visualized and understood.

Nex~t, the basis should be efficient. The desire is for

elementary operations, though not necessarily the most

elementary. The overall basis should be space-time efficient and

thereby provide a pragmatically functional system. It should

support a collection of macro-operators from which the varied

imaging operations can be ex.pressed. Although the basic

operators may not be independent of one another in a strict

mathematical sense, this last criterion embodies the essential

thinking of the Image Processing Language Program: the ultimate

01 goal is not a system which is minimal from a strictly logical

perspective, but one that provides a structured framework for the

practical expression of useful algorithms.

While the preceding criteria tend to be heuristic in nature,
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the last cmiterion to be discussed, consistency, I's a fundamental

logical requirement. It must be impossible to deduce a

proposition and its negation utilizing the basis elements. While

on the surface the consistency condition is readily

understandable, the rigorous verification of such a statement can

be most difficult; indeed, the notion of consistency goes to the

most profound depths of the foundations of mathematics. In this

instance, it will suffice to note that the e:ý-:istence of a real

world model can be taken as proof of consistency since it is a

fundamental postulate of science that two contradictory

propositions concerning the real world cannot be simultaneously

maintained. In the case of the imaging algebra- there is no

problem relating to consistency, since all of the basis operators

are induced from either the algebraic structure of the grid or

the arithmetic structure of the real line.

A set of criteria that a mathematical structure should

satisfy in order to qualify as a candidate for an image

processing algebra has been ascertained. From a rigorously

logical point of view, the image algebra itself is mainly

determined by the choice of basis. Nevertheless, it is useful to

specifically articulate those properties which are desirable for

the algebraic system as a whole. The image algebra must satisfy

certain heuristic conditions in order to serve as the supporting

structure for image processing. There are, in fact, many

different bases which lead to the same algebra. Therefore, while

there is interplay between the basis criteria and the algebra

criteria, they are to some extent exclusive. As a result, the

desirable properties for an imaging algebra need to be treated

separately.

The algebra must be effective and efficient. It is

effective to the extent that it enables autonomous target

detection and classification algorithms to be represented and

developed. Necessary to a practical effectiveness is simplicity
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and clarity; the algebra must be accessible to those who desire

to use it. Its efficiency depends upon the ex~tent to which it

* allows for algorithms to be developed in a favorable fashion with

respect to cost and resources. It must allow for the ready

e:.ploitation of the parallelism which is inherent in so many

imaging algorithms.

The algebra should unify many typed criteria. It should

serve as a vehicle for bringing together the many diverse areas

of image processing through the utilization of precise

specifications.

The imaging algebra should be at once ex:pandable and robust.

E:.:pandability requires that there will be a capability to delete,

insert, or modify operators. Robustness requires that the schema

should have little or no variation with changes in operators,

types, or constraints. Moreover, the formalism must be adaptive

to change-- due to advances in mathematics, in the characteristics

of imaging sensors and in the architecture of processors and

memory elements.

The imaging algebra structure should support object oriented

design. This requires it to be programmably transportable. It

should be an easy task to go from operators in the algebra into

code for most machines. The framework should also support a

disciplined programming style with various levels of abstraction.

It should lead to brevity, clarity, modularity, and concinnity.

Certainly all of the preceding conditions cannot be

satisfied in their entirety. Nonetheless, they can serve as

guidelines to which the construction of a useful and

comprehensive imaging algebra might aspire.

* It was recognized that any structure which encompasses the

previously mentioned elemental operations must be many typed. It
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could be a many sorted relational structure or a many sorted

partial algebra. The overall choice in this direction was a many

sorted algebra. Many sortee "lgebras are discussed in Appendi:.

C.

Yet the issue cannot be left at this level. Many well-known

mathematical structu, fit the requirements of a many-sorted

algebra. Such a struc, re is quite general.

But the particular entity arising from a choice of basis is

most specific. Indeed, it is here that the approach taken

becomes crucial.

To put the matter succinctly, an image is a function whose

domain is a subset of the collecti'on of integral lattice points

in the plane and whose range is the real numbers. Therefore, in

looking for a basis, it is natural to examine closely the

structure of the lattice points, ZxZ, and the real number line,

R. Inherent operations within those mathematical structures

induce, or lead to, corresponding operations on images. These

so-called induced operations arise naturally and therefore must

be investigated. The choice as to which ones are ultimately

chosen for the imaging algebra is not a mathematical question,

but a heuristic one. It requires an exhaustive examination of

those operations which are utilized in image processing.

Essentially the point is this: there is no need to look for

e-*:otic operations; there is only a need to take enough of the

natural operations to accomplish the specification of current

i. ge processing algorithms.

The preceding approach served as a catalyst yielding the

list of elemental operations.

Two questions arise at once. First, why not include more

induced operations? To this one can only answer that they are not
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needed at the present time. Those which can be derivred from the

ones chosen are already there. Others, which might have been

included, appear to have no place in actual image processing as

it ex*ists today. By utilizing induced operations, the basis is

ipso facto ex~pandable. If there should arise a need for more

induced operators, then simply include them. Since they will be

induced, they will be consistent with the already ex.isting

structure. This point is paramount for the development of an

image processing language: the language can be augmented without

unduly disturbing its current structure.

The other question which comes immediately to mind is this:

Why not include non-induced operations? In other words, why not

bring in operations which do not conform in a natural mannner to

the underlying latti.ce structure and the underlying real number

structure? Here the answer is quite straightforward. Not only

have no such operations been discovered in the literature

search, but it is not likely that such operations would be of

much practical value. If an imaging language is to be useful as

a means of communicatio'n and specification, it cannot be burdened

with bizarre operations which do not conform to the usual

arithmetic notions held by users. Moreover, it is not likely

that bizarre operations would be utilized in algorithm

development to begin with.

From a practical point of view, the imaging algebra as

conceived by the contractor is a mathematical structure in Lts

own right. Just as the term vector algebra denotes a particul~ar

algebra, which happens to be many sorted, it is likely that the

term image algebra will someday come to denote a particular

algebra, the one which arises naturally from the underlying

mathematical structure and the pragmatics of image processing.

A description and demonstration of some of the properties

and relationships defining each mathematical structure identified
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above has been performed. A sample of these properties can be

found in Appendix. C.

There were several criteria cited above concerning desirable

basis properties. The proposed basis is certainly acceptable

from the perspective of those criteria. It is manipulable; the

basis elements provide accessible tools for macro-function

development. It is sufficient; the basis provides a structured

and straightforward environment for algorithm expression. It is

representable; the basis has an ex-cellent spanning capability for

image to image and image to parameter operations.

In so far as the criteria described are concerned, the

proposed algebra (resulting form the choice of basis) possesses

simplicity and clarity. It allows, through the translation

operator, ex.cellent exploitation of parallelism. Moreover, its

induced nature makes it both ex~pandable and robust. Lastly, the

elemental mathematical level of the basis operators will result

in machine transportability.

The proposed basis together with necessary accompanying

explanation is given in Appendix C.

An initial demonstration of the capability and versatility

of the optimal mathematical structuare has been completed.

Appendix gives a sample of some image processing techniques which

have been translated and expressed in terms of the optimal

structure identified previously.



PHASE 11 PROPOSED ACTIVITIES Iroa SPONSOR'S

REVIEW ANID APPROVAL

It is planned to ex~tend the algebraic and other pertinent

mathematical properties and relationships of the optimal

structure. Basic research necessary to ex~tend the mathematical

properties and relationships of the selected basic set shall be

conducted. This research will ex.tend the image processing

algebra's properties and relationships which have been identified

in Appendi:.:- A, section 3.

In particular, an indepth investigation shall 1-e made into

determining the various equational constraints, such as the

commutative or associative laws, satisfied or not satisfied by

the operators in the algebra. The natural induced method by

which the operators in the algebra were obtained will aid in this

variety specification. This information will be useful in the

determination of various substructures within the optimalI
structure. Well known substructures such as groups, rings~,

lattices and so on shall be described and identified along with

their importance.

Principle operational and transformational properties and

relationships of the algebra shall be identified and illustrated.

This shall include operational and transformational optimization

techniques.

The identification of equational constraints mentioned above

can be used for transformational and operational optimization.

Due t,- these equational constraints, various transforms,

measurement techniques, or feature analysis techniques may be
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e:-:pressed in terms of the basis operators in several different

ways. For instance, if the distributive law (of multiplication by

reals with respect to image addition) holds, then there would be

a choice of using one adid and one multiply or one add and two

multiplies.

The optimization criteria would be utilized in determining

the best representations in terms of the basis. Various

criteria, such a maximizing concurrent operators, minimizing

certain types of operators, etc., shall be investigated.

often sub-optimal solutions may be obtained involving macro

operations., Various image processing operations are often

comprised of common operators not belonging to the basis. These

common operations are ex:pressible in terms of basis operators and

are termed macro operators. Macro operators could be represented

in an optimal fashion in terms of basis operators as described

above. In turn, image processing operations could be expressed in

an --ptimal fashion in terms of these macro operations. It is

possible that only a sub-optimal representation will be found for

the image operation. In other words, one miight be satisfied with

optimization relative to the higher level macro operators and

forego total optimization at the lowest level. In any case, an

e:~tensive investigation is planned into sub-optimal representa-

tions utilizing macro operations.

A list of theorems and proofs of all principal properties

and relationships implied or required by the image processing

algebra shall be prepared.

A summary of advantages and disadvantages of the chosen

structure, together with a list of unsettled problems concerning

the structure, shall be prepared. Imperative additional research

cr development shall also be recommended.
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A document which reports the result of ex.amining the

feasibility of augmenting the developed image processing algebra

by artificial intelligence (AI) techniques shall be prepared. If

augmentation is determined feasible, included in the report will

be a plan, with justifying rationale, for the integzxation of

artificial intelligence with the developed image processing

algebra.

Among the possible ways AI could be integrated into and

along with the image algebra is by the development of knowledge

base or e:-:pert systems. These systems could be designed to aid

image processing personnel utilize the image algebra. They would

represent a type of smart computer assisted instruction. Here

the user mi.ght be knowledgeable in what imaging techniques to

employ when, but would need the expert system to aid in utilizing

the algebra or to optimize procedures within the algebra.

in a different but related direction, an expert system could

be designed which incorporates various levels of the algebra,

e.g., basis operation and various macros. The system will be

used to aid in the development of image processing algorithms for

those not knowledgeable in algorithm development.

An imaging algorithm' is a finite string of imaging

operations. Thus, it is composed of a longer finite string of

macros, and a still longer string of basis operators. As such, a

totally automated optimal algorithm development is indeed a goal.

Here a brute force search could be employed combining macro or

basis operators in various ways to determine algorithms.

However, hueristics and subjective judgments should be employed

in guiding this search, thus saving time. Developed algorithms

should be played against simulated data. Subsequently,

statistical packages should be employed in determining the

quality of each algorithm.
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In the image processing algebra developed herein, images

were defined as functions from subsets of the lattice points in

the plane into the reals; that is, each pix~el had a real number

attached to it denoting a value of grey. This value of grey is

initially obtained fromi a sensor and the accuracy of the sensor

is sometimes in question. A more realistic modeling of the

situation might be to use a range of reals to denote the grey

value at a given Pix:el. More generally, a Possibility

distrih~tion might be employed to denote Values Of grey at Pix.els

or at larger regions of images.

Demonstration of techniques for Using the developed image

processing algebra to ex.press/approximate, analyze, and optimize

the performance of *,ý%isting image processing algorithms will be

performed. In addition, the use of each new image processing

transform technique resulting from the development of this image

processing algebra shall be demonstrated.

A document entitled Standard Image Processing Algebra shall

be prepared. This manuscript shall include definitions for a

collection of standardized symbols which subsequently will be

used to e:*:press the complete mathematical structure of the

developed image processing algebra. There will also be

illustrations demonstrating the application and versatility of

the structure. The appropriate justification for proposing that

the developed image processing algebra should serve as an Air

Force standard image processing algebra shall also be given. A

document and supporting ex~planatory vu-graphs entitled Standard

Image Processing Algebra in a Nutshell, will give a synopsis of

the developed standard image processing algebra. Furthermore,

this document shall be suitable for publication in a technical

journal.

At the completion of Phase II, the imaging algebra will be

implemented in the form of an image processing language. Among
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the problems addressed in Phase II will be the so-called boundary

value problems. These involve the manner in which the algebra

e:-:pressed algorithms will handle boundary pix.els and other

special cases. Since the operators of the Proposed basis work on

subsets of Z:*Z, it is felt that these boundary value problems

will not require the introduction of new operations; rather, they

will only require specially adapted subroutines with a given

algorithm.

Another language related issue concerns interaction at the

terminal level. The desire is for software that allows for an

algebra-operator oriented symbolism at- the keybo~rd. Basis

level, and perhaps some macro level, operations should be

accessed directly by single keys. Moreover, the characters on

these keys should be indicative of the imaging operation to be

performed. The thinking at this early stage is towards some sort

of overlay which can be transported to various machines.

A second fundamental consideration is for Al interaction at

the keyboard. The ex.pertise gained by the developers of the

algebra should be integrated into a comprehensive expert system

which can impart direction and insight to Users.

A time schedule of Phase II activities and milestones can be

found in Appendix~ F.
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APmiEZX C

YUTORZlAL ON fNlO AL0G3A

1. ZNMTRODUCTZON

This report represents the culmination of approximately one

year's effort to find an imaging algebra. Though much

developmental work remains to be done, the skeleton of a

satisfactory structure appears to hi..ve been found. It is the

intent of this report to define, explain, illustrate and

demonstrate the capabilities of the proposed algebraic structure.

In reading this report, several points regarding the germane

attributes of the proposed structure should be kept in mind:

a. The ten underlying basis operators are elemental

from the perspectives of both mathematics and machine

implementation.

b. Seven of the basic operators are either range

induced or domain induced, thereby rendering them both

operationally and structurally familiar.

c. Two of the operators are projections, one

e:tracting the domain of an image and the other allowing the

e:-traction of the range. The tenth operator, the

eXistential operator, allows the formation of an image.

These three operators provide for extensive data structure

manipulation and for easy movement among the sorts within

the image algebra.

d. An already well-developed collection of image
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algorithm oriented macro-operators has been developed.

Structural evaluation of these macros is in progress. The

macros provide a workable vehicle for the transposition of

e:.:isting image processing algorithms into the algebra.

e. The spanning capability of the proposed basis is

e:*:tensive; indeed, not one strictly digital algorithm has

yet been presented which is not expressable in terms of the

basic ten operators.

f. By telescoping the basic operators and the macros,

arranged in some sort of order of increasing complexity, it

should be possible to develop an image processing language

in which the user has access at all levels down to the basic

set of ten. The resulting language will take full

availability of the inherent parallelism within imaging

algorithms.

The preceding attributes of the algebra represent, in

compact form, those properties that were identified early in the

project as being critical to the eventual success of the system.

2. FUJNAMNTAL OPZRATORS IN THE ZIGING ALQGMA

The most essential property of any set of fundamental

operators, or basis, in an imaging algebra is its spanning

capability, that is, the ability to serve as a set of elemental

operations from which image processing algorithms can be

constructed. Without a good spanning capacity, a basis, and hence

the resulting imaging algebra, would fall short, no matter how

* e:-.cellent its other characteristics. The basis has the desired

spanning capability while at the same time being composed of
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operations which are both simple and natural.

in order to appreciate the power and simplicity of theA

proposed basis, it is impor-'ant to recognize that the

construction of a satisfactory imaging algebra requires at the

outset the e:,:posure of the structures that underlie the

operations specification of image processing algorithms. As with

most mathematics, these primitive structures tend to be quite

simple. In general, the end product of mathematical reasoning can

be elaborate and difficult for the non-ex~pert to penetrate;

however, the premises from which the reasoning begins are usually

not overly complex. In the case of the proposed imaging algebra,

its structure must allow for the development of most current and

(hopefully) future imaging transformations. These may ultimately

prove to be of a high order of complexity; nevertheless, they

must spring from some low level set of primitives. These, in

turn, will be a by-product of the supporting mathematical

structures upon whi~ch the operations are based.

Once the structural particulars of imaging algorithms are

discovered, they lead directly to the proposed basis. A digital

image defined herein is a partial function on ZxZ into the reals,

that is, it is a function whose domain is a subset of ZxZ and

whose codomain is the real number system R. An image can be
described by the domain being the extent and codomain

being the grey value. The set of all images will be denoted

by X. It is mathematically natural to look within the structures

of ZxZ and R to find the primitive operations of image processing.

Both ZxZ and R are extremely rich and well-studied mathematical

entities. Each has an extensive structure from which to draw.

The proposed basis was developed by drawing upon those domain

(ZxZ) and codomain (R) structural properties which play a role

in digital image processing. As occurs through mathematics,

these lead at once to corresponding properties (or, in this case,

operations) within the new structure which they together induce.
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Therefore, there naturally arises a set of domain induced

(fro., ZxZ) operations and a set of codomain induced (from R)

operat1..'rsj. In a sense, one might say that these are there

to be found. For a successful image algebra, one needs to

select those operations which are required for the convenient

representation of digital imaging transformations.

It must be understood that while the preceding comments

provide a natural approach to the basis selection problem,

they do not provide a deterministic methodology. Pragmatic

modeling decisions must be made. Not only does one have to

search the literature to see what is going on, one must
recognize that different images can have different domains

within ZxZ. The decision as to how to proceed, when one

desires to add two images with different domains within ZxZ,
must be made in a heuristic manner. In making such decisions

for the proposed basis, an attempt has been made to define

the elemental operations in a way which reflects the manner in
which the induced operations are most used in practice.

Fortunately, it turns out that in every i~stance that has come

to attention, other natural choices for the induced elemantal
operations are derivable as terms in the algebra or as macro-

operators from the chosen basis set. These macro-operators are

given in a later section along with a rigorous discussion of the

inducement process.

There now follows a brief description of the basis elements
grouped according to the manner in which they have been induced.
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TABLE C-I. FUNDAMENTAL OPERATORS IN IMAGE ALGEBRA

I Addition 0
II Multiplication 0
III Maximum

IV Division

V Translation T
VI Rotation N

VII Reflection D

VIII Donain Extractor K

IX Parameter Extractor G
X Existential Operator E

The first four fundamental operations to be introduced are

range (codomain) induced, and they include addition, multiplication,

maximum and division. The next three operations are translation,

rotation, aiid reflection. They also take digital images into
digital images; however, they are domain induced. The final

three operations in the basis do not take .mages into images.

They include the domain extraction operation, which takes an image
and returns a subset of ZxZ, the parameter extraction operation,

which maps an image into the reals, and the existential operation,

which is used in creating an image.

An image is a real-valued mapping defined on a subset of the

integral lattice Zz"Z. Symbolically, an image is a mapping
f: A -+ R, where A C ZxZ. We also employ the customary notation

for the class of all such mappings, RA. Note that for the null

set 0c Z:-:Z, we obtain the so-called null image, 0 has an empty
domain. As for the collection of all images, we denote this class

by X and

X = I)Rk
AcZ:x Z
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Insofar as a particular grey value of an image f e RA is

concerned, this is denoted by f(i, j), where (i, j) e A c Z:-:Z. The

first element of the pair, i, gives the position on the --.-a::is,

while the second, j, gives the position on the y-a:.-is.

E:.:ample 1: Let A = ( (-1,0), (0,0), (1,0), (0,1), (1,1), (1,2) },

and define the image f e PA by

f(-1,0) = 2

f( 0,0) = 3

f( 1,0) =-4

f( 0,1) - 0

f( 1,1) - 1/2

f( 1,2) = 2

Graphically, one can illustrate f in the following manner:

2 2

1 0 1/2

y=0. 0 2 3 -4
-1

-l 0 1 2

+
x = 0

Each pair (i,j) corresponds to a square pixel which is given

the grey value f(i, j). It should be noted that the solid lines

are used to separate the coordinate values from the grey value

table. Notice also that, for this example, we have used arrows to

indicate the positions of the x-axis and the y-axis. In general,

the actual ordered pair (i,j) is positioned in the center of the

(i,j)-pixel.

One can interpret the grey value f(i,j) as the height of a

three dimensional bar graph, where the darker values have greater

heights. The following example illustrates this interpretation.
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E:.:ample 2:

2
i1 4 23 1

0 3 2 1 0

0 0 1 2 3

Bar graph interpretations must be made with care because

images may have negative grey values due to processing.

a. Addition (Range Induced). Since each pixel in the

domain of an image has a grey value which is an element of R, the

real number system, and since there is a natural addition (+) in

R, there is an induced addition defined as a binary operation on

images. This image addition is denoted by Oand is a basis

operation. For each pixel in the intersection of the input

domains, the output image has the arithmetic sum of the input

grey values at that pixel. For a pixel which lies in one of the

input domains but not both, the decision has been made to leave

its grey value unchanged. A similar decision has been made

regarding the multiplication operator and the maximum operator,

each of which will be considered in turn. We define Q : xxx-4x as

follows:

If the domain of f is A and the domain of g is B, then the

domain of fD g is A U. B and

f(x,y) y) e A B
g(x,y) (.,y) e B- A

(f (g) (x,y) = f(x,y) + g(x,y) (x,y) e A n% B
undefined (x,y) E A U B

This operation is illustrated in Figure C-I.
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ADD GREY VALUES IN REGION COMMON TO BOTH f AND g

F .4-GREY VALUES OF g UNALTERED
44

f f + g HAS DOMAIN EQUAL TO THE UNION OF THE

DOMAINS OF THE ORIGINAL IMAGES

GREY VALUES OF f UNALTERED

Figure C-1. Venn Diagram for Addition

Example 3:

Consider the images f and g illustrated below.

f g

1 2 3 1 2 7 8
0 4 -3 8 1 0 5

i 0 1 2

The addition of f and g is f Qg and is given in the

following diagram.

f g

2 7 8 grey value at pixel

1 2 8 1* • (2,1) equals grey value

0 5 0 8 of f at pixel (2,1)

grey value at piXel (0,1) is 2 + 0 = 2.
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b. Multiplication (Range Induced). Similar reasoning as

given in the addition operation is applied to the natural

multiplication (.) in R. The result is a pixelwise induced

multiplication operation on pairs of input images. For a pi:*:el

in the intersection of the domains of the input images, the

corresponding grey values are multiplied. On the other hand, the

grey value of a pi:.:el which lies in only one domain of the input

images is left invariant.

Hence we define the binary operator

0: X " X -- X, where the operands are images and the output

is also an image, as follows:

Let the domain of f be A and the domain of g be B. Then the

domain of fog is A U B and

( f( ,y) (x,:y) 6 A - B
(fQg) (:,y) = g( ,y) (x,y) c B- A

f (x,y) 0 g(:,y) (7-,y) e A n B
undefined (x,y) 0 A Q B

This operation is illustrated in Figure C-2.

MULTIPLY GREY VALUES IN REGION COMMON TO BOTH f AND g

4- GREY VALUES OF g UNALTERED

f * g HAS DOMAIN EQUAL TO THE UNION OF THE

DOMAINS OF THE ORIGINAL IMAGES

GREY VALUES OF f UNALTERED

Figure C-2. Venn Diagram for Multiplication
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E:-:ample 4:

If f and g are given in Example 3, then f g is illustrated

below.

S21 7 8

1 0 15 1

0 4 -9 a

0o 1 231

c. Maximum (Range Induced). Given two real numbers in R

there is a natural order operation called maximum. Simply

stated, for two real numbers y and z, y• z is either y,z or their

common value, depending respectively upon whether y is greater, z

is greater or they are equal. This naturally induces a pixelwise

maximum on the intersect'-on of two input domains. Once again,

the heuristic determination has been made to leave the input

images unaltered off the intersection. The operation is denoted.

by®.

We define Q : X x X -4 X, where the domain of f is A and the

domain of g is B, then

rf(x,y) (x,y) 6 A - B
g(x,y) (x,y) e B - A

(f g) = f:.,y) V g(x,y) (x,y) e A r) B
undefined (x,y) 0 A U B

An illustration is given in Figure C-3.
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TAKE MAXIMUM OF GREY VALUES IN REGION COM4MON TO f AND g

GREY VALUES OF g UNALTERED

f g HAS DOMAIN EQUAL TO THE UNION OF THE

DOMAINS OF THE ORIGINAL IMAGES

GREY VALUES OF f UNALTERED

Figure C-3. Venn Diagram for Ma::imum

E::ample 5:

If f and g are given as in Example 3 then fDg is illustrated

below.

2 7 8
1 2 5 1
0 4 3 8

d. Division (Range Induced). Each grey value Z which is

not zero has a reciprocal grey value 1/z. Hence there is a

natural image operation, called division, which replaces each

nonzero grey value by its reciprocal. It is denoted by(2. since

in R the reciprocal of zero is undefined, it has been decided

that the division operation should leave the output image

undefined at any pixel for which the input image has grey value

zero.

Consequently, (2). X --) X, where if there is a zero pixel in

the input image then the output image has a smaller domain than

the input.
4L2

Islili
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undefined if f(:.:,y) - 0. When the division is preceded by a

multiplication operator we shall omit0 . A diagram of this

operation follows:

BEFORE

SGREY VALUE CL 0

[]-G GREY VALUE - 3

AFTER

Ma -- GREY VALUE 11/(

OLE NOT PART OF IMAGE

Excample 6:

Consider the image g given inExample 3,®2g is given below in

the illustration.

(O)g

2 1/7 1/8

1 1/5

01 2 /3
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*. Translation (Domain Induced). Given a position vector

in two dimensional space, denoted by (m,n), the vector addition

between (mn) and another vector (ij) yields a new position

vector (m+i,n+j). Geometrically, the original position is moved

over (". direction) i units to the right and up (y direction) j

units. This position operation induces the translation operation

on images. The elemental operator T moves an image over and up,

while leaving grey values unchanged. Notationally, T(f,i,j) or

fi0j is used to indicate the image obtained by moving it over i

units and up j units. It is this domain induced operator T which

has proved to be invaluable in the exploitation of the natural

parallelism which exists in many imaging operations. We define

T: X:-:Z:*:Z -+ X, where T is the trinary operator defined by:

(T(f,i, j)) (x,y) - f(x-iy-j)

An illustration follows:

SAME GREY VALUES

AFTER
q + j

BEFORE

q --_f--I

p p+i

Example 7:

Consider the image f illustrated below

4
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,f
vertical location * 3

of pixel 2 grey value of pixel
2 2 2 1 (2,1) is 1, that is

0 4 -3 f t(2,1) a 1
1 21 3 horizontal location

of pixel

The translate of f, i-2 units to the right and J-1 units up

is denoted by T(f,2,1) - f 2 , and is illustrated below.

f2 1

2 2 21

- 4 -3 8

0

f. Ninety DeZee Rotation (Dmin Induoed). A set of
ordered pairs in the two dimensional lattice ZxZ c~n be rotated

90 degrees in the counter-clockwise direction. This at once

induced a ninety degree rotation operation N. The grey values of

the input image are left unchanged and the image is simply
rotated. Consequently: N : X -+ X by

(N(f)) (x,y) - f(y,-x)

The illustration given below depicts how N rotates the image

f counter-clockwise about the origin a full 90 degrees and does

not otherwise alter it.

THE DOMAIN IS ROTATED, THE GREY VALUES

ARE FIXED AND DO NOT CHANGE RELATIVE

TO THE DOMAIN.
- A F T E R , " ,,

BEFORE

900
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E::ample 8:

If the image g is given in Example 3, then N(g) is

illustrated below.

9 N(g)
2 7 8- k2 -

1 0 5 30o 1 0l" :

g. Diagonal Rflection (Domain Znducd). This operation is

similar in origin to the 90* rotation, except that the image is
flipped out of the page around a 135* line through the origin.

This operation is denoted by D. D : X -* X, where (D(f)) (x,y) -
f(-y,-x). Hence D makes row pixels become column pixels (and

conversely) by rotating the image 1800 out of the page about the

-450 axis. That is, it flips the image as illustrated below.

THESE ARE MIRROR IMAGES

OF EACH OTHER
14 BEFORE

AFTER

-450 AXIS

E:.:ample 9:

Consider the image g given in Example 3. Then D(g) is

illustrated below.

D(g)

1

0 7 0 1
-1 a 5 3

-2 -1 0 1
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h. Domain Ixtractor. The domain of an ir ge i.- a subset of ZXZ.

It is natural and convanient to consider the operation K which

takes an image and yields a subset of Z:Z, that subset being the

domain of the image. Hence K : X -+ 2"a and for f in R&,ACZ:Z,

K(f) - A.

INPUT OF OPERATOR K
f

i ( • • (itj) .... } -OUTPUT OFOPERATOR K

Example 10:

Consider the image f illustrated in Example 3.

f
1 2 3 1

0 4 -3 812 1

The domain extraction operation performed on f is K(f)

and K(f) - { (0,0), (0,1), (1,0), (1,1), (2,0), (2,1) 1.

i. Parameter Extractor. Each pixel in the domain of an

image has a given grey value. It is often necessary to read out

that value, which is an element of R, the codomain. It turns out

that it is only necessary to assume the ability to extract the

grey value at the origin pixel. Others can be found by first

applying the appropriate translations. This basis operation

yields the grey value at the origin pixel for a given input

"image. The complexity of the rigorous definition results from the

desire to have this operator defined even if the grey value at

47



the origin is undefined. In that event, the closest grey value

i.ý chosen. This latter stipula.ion is essentially just a

mathematical formality since it is possible to move any grey

value to the origin by translation. The operator G extracts the

grey value of the pixel which is closest to the origin in

Euclidean distance and at the smallest angle from the abscissa.

Hence G: X -- R, where

f(0,0) when f E RA and (0,0) E A
G(f) = when f = 0

(i,j) otherwise, where tan-1 (j/i)
is minimized for minimum
i2 + j2.

The operation is illustrated below.

f
OBTAIN GREY VALUE OF THIS PIXEL

T
Example 11:

Consider the image f given in Example 3. Then G(f) = 4

since f(0,0) = 4.

j. Existential Operator. Somew/bat opposite of the domain

finding operation and parameter extraction operation is the

Ex:istential Operator E. This operator is a binary operator used

in manufacturing ar. image. The inputs of this operator are a

grey value t and a subset A of ZxZ. The output is a constant

image with domain A such that every pixel in A has grey value t.

Such an image is denoted by tA; i.e., tA(i,j)=t E R; for

(i,j) e A and is undefined elsewhere. Thus we define

E : R x 2zxz-4 where for t e R and A e 2zz, E(t,A) - tA.
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If A - 0 then E(t,A) 0 0 (the empty image).

Input of operator E

AE 0 Output of Operator E.A C ZxZ 
ttA

t= All pixels in A have grey value t.

Ex-:ample 12:

Notice that E(2,{ (0,0), (0,1), (1,0), (i,1) }) is given by:

W 2 
2

0 2 2

The aforementioned operations form the proposed basis. Each

taken individually is very simple in its structure. Yet taken as

a collection, they possess a powerful spanning capability insofar

as the following transformation types are concerned: image to

image, image to parameter and image to set. Both their

simplicity and their power result from the inducement methodology

(described in para 9) which br.Ings them to light.

3. MACRO OPERATIONS IN THE IMAGING ALGE1RA

In the previous section, the fundamental operations in the

imaging algebra were introduced. These operations are either

directly or indirectly used in describing, representing, or

expressing important image processing operations. A hierarchy of

operations is a beneficial approach in this representation. The
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fundamental operations can be thought of as components in a

system. By utilizing numerous components, subsystems are created

and, as a whole, the system is comprised of several subsystems.

In the imaging algebra, macro operations act like the

subsystems. Each macro operation is formed from the fundamental

operations usi-'ng function composition and, as such, each of the

ten fundamental operations are themselves elemental macros. In

the universal algebra, macro operations are also called terms for

the algebra. Finally, these macro operators are ultimately

employed again using function composition in forming image

processing operations. These image processing operations are

indirectly represented in terms of the ten fundamental

operations. However, if desired, a direct representation in terms

of this basis can always be given, but this expression will often

be long and tedious.

In this section, several macro operations shall be

described, along with their basis representations. This

presentation is also given in a hierarchal manner. Once macro

operations are defined, they might be employed in describing a

later macro in conjunction with the utilization of fundamental

operations.

In addition to defining macros which take images (that is,

elements of X - U RA) into images, macros will be given
ACZx~Z

involving other sorts of sets. In particular, the set of all

images with finite domain will be needed. Here, Y - U RA and it
Ac.ZxZ

is noticed that Y C X. Additionally, the set of all binary

images B will be used in defining some macro operations. In this

case, B = U f{O,l}A and B c: X. Other than these, macros will be
AcZxZ

given with domain or codomain involving the subsets of ZxZ or the

reals respectively.

50



a. Subtraction Macro

(1) Description. Grey values in an image f can be negated.

This is done by employing the subtraction operationGto the

image f, where

OX -* X

This operator has an operand which is an image, and the result of

the operation is an image with the same domain as the original

image. Furthermore,

( f) (x,y) = -f(x,y)

When the unary operator 2 is preceded by® , it is customary to

omit the ®.

(2) Basis Representation. The subtraction operation is

most easily found by utilizing the existential operator, along

with the domain finding operator and multiplication operator.

Thus,

f =f E(-l,K(f))G0f.

b. Minimum Macro

(1) Description. Similar to the maximum operation

previously discussed, there is the minimum operation 0 . This

operator, when applied to two images, gives the pixelwise minimum

value of grey on the intersection of the domains of the two

images. On the symmetric difference of the domains, the grey

values remain unchanged. Hence

: X x X -X
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where® is a binary operator which has operands that are images,

and it yields an image as output. Let the domain of f be A, and

the domain of g be B then If(x ,y) (,y) e A- B
g( ,y) (:,y) 6 B- A

(f g) (:,y) = f(:,y) ®g() ,y) (:-Yy) e A n B
undefined (x,:y) 9 A U. B

(2) Basis Representation. The minimum macro operation is

represented by employing the maximum operator and the subtraction

macro:

f g 2) ()f® GGg)

c. Scalar Multiplication Macro

(1) Description. It is convenient to define a scalar

multiplication operation A which is similar to the scalar

multiplication in a vector space. Here, an image f is to be

multiplied by a given real number c and the result will be an

image whose grey value at a given pixel is a times the original

grey value. Thus,

A:R xX-+ X

where A is a binary operation with operands being an image and a

real number and the output being an image. Furthermcre,

a A f ) (x ,y) -a * f (z.,y)

This operation is also often denoted by af.
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(2) Basis Representation. The scalar multiplication macro

is obtained under function composition utilizing the e:x:istential

; operation in addition to the domain extractor and the

multiplication operations. Hence,

a f - E (a, K(f)) f.

d. Zero and One Image Macros:

(1) Description. Among all the constant images, that is

images whose pi:.:els all have the same value, the zero and one

images are most useful. The zero image with domain A is denoted

by 0OA

(2) Basis Representation. Any constant image is easily

found using the existential operation; indeed,

0A = E (0,A)

and

'A = E(1,A)

e. Complementation Macro

(1) Description. Let f be a binary image over the set A,

that is, f in {O,l}A. Then the complementary image fc is also an

elerrent of {O,i}A. It is defined by

0 if f(i,j) = 1
fc(ij) = 1 if f(i,j) = 0

undefined if (i, j) e A

The complementation operator C is defined by

C : B-4 B
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by

C(f) - f!

where

B = U {0,1)A
ACZxZ

is the collection of all binary images.

(2) Basis Representation. Complementation is easily found
using addition, subtraction and the identity image.

Let f be an element of {0,l}A.' Then

fc [Of 'OlA

where 1. is the image consisting of ones on the subset A of ZxZ.

Notice that 1A = E [ 1, K(f) ]

f. Rotation Macron (N2 and N3 )

(1) Description. While the basis operator N rotates 90Q,

it is often necessary to rotate 1800 or 2700. The operators N2

and N3 respectively accomplish these rotations.

We define

N2 : X - X

by

N2 (f) (i,j) =

and

54



N 3  X-- X

by

N3 (f) (i, j) - f(j,-i)

(2) Basis Representation. The above rotation operators are

given by

N2 - N[N(f)],

and

N3 = N2 [N(f)]

g. Horizontal Reflection Macro

(.) Description. In order to reflect or flip an image

around the .::-a:-is, we define the horizontal flip macro

F : X-X

by

F(f) (i,j) = f(i,-j)

(2) Basis Repres-.tation The operator F is given by

F(f) = N[D(f)]

where N is the 900 rotation basis operator and D is the diagonal

flip basis operator.

h. Vertical Reflection Macro

(1) Description. In order to reflect an image around the

y-axis we define the vertical flip macro

V : X -+X

by
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V(f) (ij) - f(-i,j)

(2) Basis Representation. The vertical flip macro is given by

V(f) - N3 [D(f)]

where N3 is the 2700 rotation basis operator and D is the

diagonal flip basis operator.

i, 450 Reflection Macro

(1) Description. In order to reflect an image around the
450 line y = we define the 450 diagonal reflection operator

Do X - X

by

D0 (f) (i,j) -f(jti)

After

EBefore

Figure C-4. Illustration of 45* Reflection Macro

(2) Basis Representation. The 450 diagonal reflection
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macro is given by

SD0 (f) -NF(f)

where N is the 90* rotation basis operator and F is the

horizontal flip macro.

j. Zero Divide Macro

(1) Description. At times, it is useful to consider a

division operation which takes images into images by taking the

reciprocal of non-zero grey values at a given pixel and leaving

zero grey values unchanged. Consequently, we define

(Do X X-

by

1/f(ij) if f(i,j) # 0
®0 f(ij) - 0 if f(ij) - 0

undefined if (i,j) 0 K(f)

When® is preceded by®, we often leave out the multiplication

symbol 0.

(2) Basis Representation. This operation is found by using

division, addition, and the zero constant image.

Let f be an element of RA. Then

0 f- f OA

where 0
1 = E[0,K(f)].
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k. Thzeshold Macro

(1) Description. Numerous threshold operations e:ist;

however, they all are binary operations which take an image and a

real number into a binary image. We begin with one variation of

threshold. The threshold operator is defined as follows:

'C: X x R -+ B

by

1 if f(i,j) ?. tT(f,t) (i,i) 0 if f(i,j) < t
undefined if (i,j) i K(f)

To simplify notation, we usually write

% ( ' ) - ( ' It)

In particular, we shall most often concern ourselves with

thresholding at 0, and in this case To represents the operation

at hand.

(2) Basis Representation. This operation is constructed

from the minimum, zero divide, complement, subtraction, scalar

multiplication, as well as zero and one images. Let f be an

element of RA and t be a real number.

Then

To(f) - I(f®00) Go (f OA)]a

and

t - TO(f t A 1)
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1. Variations of Threhollding Macroa

(1) Description. The threshold operator Tt has been

defined utilizing the inequality

f (i, j) > t

Four variations of the underlying threshold operation will be

defined in accordance with the solution sets of the following

equations:

(a) f(i,j) : t

(b) f(i,j) > t

(c) f(i,j) < t

(d) f(ij) - t

The corresponding macro threshold operators will be respectively

denoted by T' , T2, T3, and T4 . They are respectively defined

by:

T1 1 f (i, j) <e t
(a) t '(f) (i,j) - 0 f(i,j) > t

S1 f(i,j) > t

(b) C2t(f) (ij) = 0 f(ij) > t

(c) T3t (f) (i,j) = 1 f(ij) < t
01 f(ill) a t

(d) 4 (f) (i,j) = {10 f(ij) - t

(2) Basis Representation. Let f and t be elements of RA and R

respectively. Then

(a) TIt (f) - T-t(D f)
(b) '2t (f) - [Tit (f) I C

(c) Tt (f) - •t(f)]

(d) 1'4t(f) = ;(f) .Tt1(f)
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X. Clipper maczo

(1) Description. The threshold operation gives a binary

image which has grey value 1 on those pixels in which f exceeds

or is equal to some given input threshold value. The clipper

acts in an analogous fashion in that it leaves f unaltered on the

pixels for which it is greater than or equal to some threshold

value and it sets the image equal to zero where it is less than

that threshold value. We define

CL X x R -4 X

by

If(io~j) if f(i~j) k t
CL(f,t) (ij) - if f(i,j) < t

undefined if (i,j) K(f)

(2) Basis Representation. The clipper operation is found

using the thresholding macro in addition to multiplication. Let

f be an image and t a real number. Then

CL(f,t) - fG;V(f)

Notice that corresponding to the four variations of thresholding,

there are four variations of clipping. These are

CLk(f,t) - f tkt(f)

for k - 1,2,3 and 4.

n. Positive and Negative Part Macro*

(1) Description. The positive and negative part macro

operations take images into images, and both yield images without

negative grey values. The positive part of an image f is the
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image

f4 *(ij f(i,j) if f(iJ) z 0
0 if f(i,j) < 0

The negative part of an image f is the image

S-f(i,j) if f(i,j) r 0
f-(i,j) - 0 if f(ij) > 0

(2) Basis Representation. The positive part of an image is
found using thresholding and multiplication, while the negative
part uses subzýtraction in addition to these other operations.

Thus,

f+ to •(f) Of

ýand

It is interesting to notice that

f÷ CL(f,0)

and

f -f÷2f-

o. Absolute Value Maczo

(1) Description. Given an image f, the absolute value
operator yields an image whose pixel values are the absolute

values of the original pixel values. Therefore,

AB : X -+X
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where the usual notation for absolute value is often used instead

of the prefix notation. Thus,

AB(f) = j f I

In any case, I f I is defined as

{f(ij) if f(ij) k 0
1 f I(i,j) -f(i,j) if f(i,j) < 0

undefined if (i,j) 0 K(f)

(2) Bas.is Representation Absolute value is defined in

terms of the positive and negative parts. For any image f, we

have

AB(f) =f÷• f-

p. Support Macro

(1) Description. The support of an image is often defined

to be the subset of pi:x:els where the image is defined and has
grey value not equal to 0. In a somewhat similar manner, the

support macro, supp, is defined to be an unary operator which

takes an image i.nto a binary image:

supp X -k B
where

i 1 if f(i,j) • 0
supp(f) (i,j) = 0 if f(i,j) 0

(2) Esiss Representation. 'L'he support macro is defined in

terms of the thresholding macro, the complementation macro, the

absolute macro, and the subtraction operation:

supp(f) (TO[ If;)Q
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q. Addition Macro

(1) Description. It is often convenient to have an

addition operator which adds two images only on the intersection

of the domains and has that intersection as the domain of the

final output. We define

a X X -4x

by

a ( f(i,j) + g(i,j) for (ij) e A i BG fg) (i,j)
undefined elsewhere

where f has domain A and g has domain B in ZxZ.

(2) Basis Representation. The macro is defined using

function composition involving the fundamental addition,

division, and multiplication along with the zero and one constant

image. Let f be an element of RA and g be an element of R9.

Then

r. Multiplication Macro:

(1) Description. It is often convenient to have a

multiplication operator which multiplies two images only on the

intersection of the domains and has that intersection as the

domain of the final output. We define

"M Z:x xx -+x
by- I.

~f g) ( ) f(i,j) u g(i,j) for (ij) e A n B
undefined elsewhere
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where f has domain A and g has domain B in ZxZ.

(2) Basis Representation. Let f be an element of RA and g

be an element of RB. Then

M(f, g) = a(f g, 0 Ara

a. Divide Macro

(1) Description. Whenever we write fag, by convention we

mean f [ g]. As a result, if the domains of f and g are A

and B respectively then the output image is defined on the

intersection of {(i,j)eB such that g(i,j) * 0} with A. One might

wish the output domain to be a subset of the domain of f. We

define

D x : x -• x

by

ff(i,j) / g(i,j) if both f and q are defined
DL(f,g) (i, j) at ) ne d if g(i,j) * 0undefined el sewnere

(2) Basis Representation. This macro is described in

terms of the multiplication macro and the fundamental division

operation:

D(f,g) = M(f f g)

t. -igher (Maximum Macro)

(1) Description Like the addition macro and the

multiplication macro, there exists a maximum macro, called

higher. It is given by
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H: x x -x

where

H{ f(i,j) V g(i,j) for (i,j) e A n BH~f~g) (if j)
- undefined elsewhere

A being the domain of f and B being the domain of g.

(2) Basis Representation, Let f be an element of RA and g

be an element of RB. Then

H (f,g) - MIf(),1 I

Note that

S= l'M[ 'A, 1S]

u. Lower (Minimum Macro)

(1) Description. The macro £ is defined in a manner

analogous to the macro H except that the minimum is involved.

Indeed,

X X x -- X

by

£f(ij) A g(ij) for (i,j) e A rn B{ undefined elsewhere

where A is the domain of f and B is the domain of g.

(2) Basis Representation. Let f be an element of RA and g
i 0

be element of RB. Then

£(f,g) - M f(®g, • 1.
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v. Special Zero Macro Operators

(1) Description. The following two macros are related to

the support macro. They are the zero indicator macro

Z : x - B

by

S1 if f (i,j) = 0{ undefined elsewhere

and the zero retainer macro

Z X :X-4B

by

0 if f (i,j) = 0
Z (f) (i,j) = undefined elsewhere

(2) Basis Representation. The zero indicator macro

operations are representable in terms of the support macro, the

complement macro and the division operation. The zero retainer

is obtained from the zero indicator using the multiplication

macro and the zero identity image. The zero indicator is given

by

Z(f) = O[ supp(f) ]C

and the zero retainer is given by

Z (f) = OkZ(f)

where A is domain of f.
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w. Selection Opezator

(1) Description. The selection macro S is similar to

operations on data bases. In the imaging algebra, S takes an

image f in RA and a subset B of Z:.Z and returns an image g which

has domain AnB and is equal to f on that domain. Hence

S : X x 2 zz -- X

where

S.fB)'' (i~j) f(ij) for (i,j) e A n B{ undefined elsewhere

and A is the domain of f.

(2) Basis Representation For f in RA and subset B of Z:.:Z,

S = M(f, 1.) where M is the multiplication macro and 1i the image

with grey values equal to 1 on B.

x. Extension Macro

(1) Description. The extension macro takes an image f (the

primary image) and an image g (the secondary image), and outputs

a new image. This image is identical to f on the domain of f and

is identical to g on that part of the domain of g which is

outside the domain of f. Hence,

E : X -x X

by

rf(i,j) (i,j) e A
E(f,g) (i,j) g(i,j) (i,j) B - A

lundefined (i,j) E A U. B

"where f is in RA, g is in R8 and B - A is the subtraction of B

from A.
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(2) Basis Representation The extension operation is found

using the selection macro in addition to using scalar

multiplication, multiplication and addition. With f in RA,

(fg) (0 S(g,A) ) Og) Of

y. Grey Level Summation

(1) Description. Given an image f in Y (the set of all

images with finite domain) the grey level summation macro

outputs a real number which is the sum of the grey levels in f.

Hence define

X 0: Y- R

by

X(f) -= f(i,j)
4i, J) *A

where f has domain A.

(2) Basis Representation. This operation is described in

terms of the selection operation, the translation operation,

addition operation and the grey value parameter extractor. Let f

be an element of RA. Then

1__)o(f) = G [ I S [ T.•,_-1(f), { (0,0) } ] ]
(i, j)uA

Where G is the grey value functional: G gives the grey value at

the origin and the summation implies a repeated use of the

fundamental addition operation ( . It is interesting to note

that, by employing N2 , 1 0 (f) can be written as

10 (f G 7 S T T 1.(f), (0, 0 )
(i.6
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where a is the domain of N2 (f).

z. Grey Level Product

(1) Description. Given an image f with finite domain, the grey

level product macro outputs a real number which is the product of

the grey levels in f. We define

no : Y -+ R

where

no0 (f) = rf(ij)
(£, j)uA

and f has domain A.

(2) Basis Representation. Let f be an element of RA with

A c Z:-Z and card A < a. Then

no0(f) = G c n S [T-i,_j(f), { (0,0) } ] 3

In the basis representation, -denotes a repea ed use of the

fundamental multiplication operation and G gives the grey value

at (0,0).

aa. Grey Level Haximum

(1) Description. Given an image f with finite domain A,

the grey level maximum macro outputs a real number which is the

ma:ximum of the grey level in f. We define

0 : Y -4 R

by

Go (f) V f(i,j)
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(2) Basis Representation. Let f be an element of RA where

A c Z:.:Z and card A < o. Then

0 (f) - G (V S (T.-,. 1(f), { (0,0) } I I
(it J)iA

In the basis representation V deotes a repeated use of the

fundamental ma:imum operation® and G the grey value e:tractor.

bb. Grey Level Minimum

(1) Description, Given an image f with bounded domain,

the grey level minimum macro outputs a real number which is the

minimum of the grey levels in f. Hence

00 Y -+R

where

Q0 (f) :A f(i j)

and f has domain A.

(2) Basis Representation. Let f be an element of RA, where

A C Z:x:Z and card A < o. Then

3 0 (f) - G A S [ T._,- (f) , { (0,0) } ]

In the basis representation A denotes the repeated use of the

minimum macro operation ® and G is the grey value e:.:tractor.

cc. Reatriction Macro

(1) Description. The e:x:tension operator e:xtends a given

image into the domain of a secondary image. The new domain is

the union of the original domains. The restriction macro defined
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herein restricts the primary image to the intersection of its

domain with the domain of the secondary image. Notice that no

new grey values are defined by this operator. Thus

9t X NX- X

by

{ f(ij) for (i,j) e A ) B
(f, g) (i, j) undefined elsewhere

where A is the domain of f and B is the domain of g.

(2) Basis Representation. The macro is obtained from the

selection macro and the domain finding macro. Let f and g be

elements of RA and RR respectively. Then

9t(f,g) -S(f,B) -S(f,K(g)) .

dd. Dot Product

Description. Suppose two images f and g have the same

(finite) domain, say A. Then a dot product can be formed between

f and g according to the definition.

D0 (f,g) = f(i,j) x g(i,j)
(i,j)OA

If the images do not have the same domain, then the dot product

is undefined. As a result, Do is not defined on X x X. Instead

SDo : U Rk-% RA R
S~~A4ZzZ, card A < ,

(2) Basis Representation Let f and g be elements of RA.

Then

D 0 (f,g) - 0of®g]
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*a. riltiring Macro

(1) Description. One of the most common operations in

image processing is that of filtering an image by a given mask.

Since a mask is nothing but an image which is being used for a

specific purpose, the filtering macro needs to make no reference

to the term mask. We define

:Y Y - Y

by

f(i + u,j + v) * g(u,v)(UT)QR if all terms in the sum

S (fg) (i,j) = are defined, and B is the
domain of g.

undefined if there exists at least one
undefined term in the sum.

(2) Basis Representation. Let f and g be elements of RA

and Rs respectively. Then

S(fg) = JE [Do [9t(f,Ti,j(g)), T3 ,j(g)], {(i,j) ]

where Za denotes the repeated use of 0 addition.

ff. Pixelwise Norms for Image Vectors

(1) Description. At times, consideration must be given to

a vector of images of the form (f, f 2s,...,f.) where each fk is an

image. For the present, this discussion will be restricted to

the case where all the fk have the same domain. Once such a

vector of images exists, a norming image can be defined, i.e., an

image which has at each pixel the grey value which results from

applying some given norm to the vector of grey values which

correspond to that given pixel. In other words, for each pixel

(i,j) in the common domain of the fk, a real valued vector can be

associated.
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Vij- (fl(i,j), f 2 (i,j), ... , f.(iJ)

Any norm can then be applied to Vij; however, this discussion
is restricted to the following

I IV±,jI I. - ma:.. {lfk(iIj) I)
k - 1,2,,..,a

liVijl I - IfI(i,j)I + If 2 (ij)I + If 3 (ij) I + .. + If.(ifj)i

IVi,jl 12 - ( fki, ) ]2)j
k-i

Three corresponding operators are defined:

N. : X X x.. X -x X (m terms in product)

N, : X x X x ... x X -• X (m terms in product)

N2 : X x X x ... x X -* X (m terms in product)

These are respectively defined by

N.(f1, f 2, ... I f.) (i,j) - IV±,11 I..
N,(f 1, f 2, I , fm) (i,j) -- I IVi,11 L
N2 (f3, f 2, ... , f,) (i,j) I I IVi, I 12

(2) Basis Representation. The respective basis representations
of the preceding three operators are:

N.(f 1 , f 2, .. , f.) MVIfkI
k-I

N1 (f 1, f2, .. f.) X 1IfkI
k-i

SN 2(f1 f 2, .. , f.) - IfkI]2)d
k-i
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where in the last representation, the notation gi , g an image

means to obtain a new image by taking the positive square root of

each pixel, assuming, of course, that g has no negative grey
values. It should be noted that the square root operator might be

expressed in terms of basis operators, in which case, it would be

only a finite approximation to the actual square root. For
instance, a few terms of the Newton Raphso may be employed. In

any case some convention must be adopted regarding the square
root when implementing it as a procedure.

gg. Gradient Type Edge Detector

(1) Description, Many edge detection techniques involve

filtering by two directional masks, one which detects change in

the horizontal direction and one which detects change in the

vertical direction. Examples are the usual gradient, the Prewitt
gradient and the Sobel gradient. These operators each have three

popular variants, the particular variant depending upon the

choice of norm. Consequently, we will introduce three edge

detection macro operators, one for each norm. Define

E :X x X x X x R -- B

Ej :X X x X x R -• B

E 2  X x X x X x R -• B

by

E.(f,M,N,t) = T[(N.(,{(f,M),Z(f,N)}]

E1 (f,M,N,t) - t[Nj{- (f,M),3 (f,N) )I
E2 (f,M,N,t) - Tt[N2({ (f,M),Z (f,N)1]

In each of the above, M and N are images which, in practice,

represent directional ma.ks.
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(i) Basis Representation. The above definitions are

themselves basis representations.

A particular instance of the gradient macro occurs with the

Sobel edge detector. In this case, if the image is f, then the

input masks are

0 2 and 0 0
-1 0 1 -1 -2 -1

As images, elements of X, these are given by

+1 -1 0 1

0 -2 0 2
-11-1 0 1

and

+1 1 2 1
0 0 0 0

N -i -1 -2 -

-1 0 +1

The threshold parameter t depends upon some heuristic or

knowledge-based a priori decision.

hh. Compass Gradient Operators

Description. In a manner similar to the gradient type

operators, we shall describe a compass gradient type macro

* operator. It can be used with any set of eight compass gradient

masks such as the Kirsh or 3-level masks. We shall leave out the
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thresnolding operation. It can always be composed with the

output of the present macro to produce a binary edge image.

Ec : X X ...... X -- X (8 terms in product)

by

EC f,MlM 2,.., MS) = N.[3 (f,M 1 )3, S3 (fM 2 ) , ... IS (f,M) I

where in practice MI, M2, ... , M8 are masks of the same dimension.

A4 ex-ample of the compass gradient macro occurs when

M1 ,M 2, ... , M9 are the eight Kirsch masks. Technically, each

Kirsh mask is an image in RA, where A consists of the origin

together with its immediate neighbors, both strong and weak. For

instance,

+1 -5 3 3

M1 0 -5 0 3

-1 -5 3 t3

ii. Binary Morphological Macro Operators

(1) Description. Because of their prevalence in image

processing, it is useful to define macro operators for the four

basic morphological operations. Each is of the form

Operator: (B n Y) x (B r) Y) -4 (B r) Y)

The four macros are dilation, erosion, opening and closing. They

are respectively given by

DI(f,g) = QTj,j(g) (A is the domain of f)
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ER• ,g) = [DI{fc,N 2 (g) }]C

OP(f,g) =ER[DI{f,N 2 (g)},N 2 (g)]

CL(f,g) = DI[ER(fg),g]

(2) Basis Representation. The preceding e:xpressions are

basis representations.

jj. Grey Level Morphological Macro Operators

(1) Description. The following four grey level

counterparts to the binary morphological macros given in

paragraph ii above are in use. It should be noted that there are

other ways to generalize the binary morphological operators. The

following operators are of the form

Operator: Y x Y -4 Y

They are grey level dilation, grey level erosion, grey level

opening, and grey level closing. The are respectively defined by

DI(f,g)] (i,j) = E[ 0{ a(f,gi,j))}, (i,j) ]

ER(f,g)] (i,j) = E[ a (f, gj) (i,j)

OP(f,g) = ER[DI{f,N 2 (g)},N 2 (g)]

CL(f,g) = DI[.R(fg),g]

Several comments are in order:

7
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(a) It is assumed that the structuring element g is

symmetric.

(b) In words, DI (f,g) is evaluated at (i,j) by adding the

(i,j) translation of g to that part of the image f which

matches domainwise the translation of g, taking the ma:x:imum

value of that addition and then making that maximum the grey

value at (i,j).

(c) ER is similar to DI except that gi,j is subtracted and a

minimum is taken.

(d) Given DI and ER, OP and CL are evaluated in a manner

similar to the manner in which DI and ER are obtained from

OP and CL.

(2) Basis Representation. The preceding expressions are

basis representations.

4. ANALYTIC MACRO OPERATORS

Consider the complex-valued function b(z) of a complex

variable. Suppose that b(z) is analytic in the disk of radius r

centered at the origin. Then b(z) can be expressed as a power

series:

b(z) bk zk
k-0

If b(z,n) denotes the nth partial sum of the series, then

the meaning of the series expression is that lim b(z,n) = b(z)

for all z such that Izi < r. The purpose of this section is to

formalize an extension of analytic functions to the construction

of particular macro-operators in the image algebra.
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Suppose b(z) is analytic and poseesses the preceding power

series representation. Moreover, let f be an image and n be any

non-negative integer. If f is the null image, then we define

b(f,n) to also be the null image. If f is not null, then we

define b(f,n) by

n-i

b(f,n) = bkfk
k-0

where

n-i

a. for n > 0, fn _I f
k-0

the product being the image product, ®, of f with itself n

times.

b. f 0  = E[I,K(f)].

c. bkf is the scalar multiplication of bk times f in the

image algebra.

d. The summation denotes image summation, 0

When viewed as a binary operator with multi-typed inputs f

and n, b is an operator in the image algebra. It is called an

analytic operator. It should be noted that the definition of

b(f,n) is a basis representation in and of itself.

Now suppose pixel (i,j) is in the domain of image f By

construction, b(f,n) is domain stable and hence (i,j) is in the

domain of b(f,n) . Moreover, due to the pixelwise definitions of

the induced basis operators®, D, and A,
n-I

[b(f,n)I (i,j) = bkf(i,j)k

"- k-0

In other words, the grey value of b(f,n) at the (i,j) pixel is
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the nth partial sum of b(f(i,j))

[b (f,n)]I (i, j) b b(f (i, j) , n].

Although we could have easily defined limits in the image

algebra by inducing them from the range, we have not done so

since our purpose has been to remain in the digital mode.

Nonetheless, since [b(f,n)] (i,j) is a real number for each n, it

does make sense to take the limit of the sequence {[b(f,n)]

(i,j) } as n-4-. Since it is assumed that b(z) is analytic in the

disk of radius r, if If(i,j) I < r, then

lim [b(f,n)] (i,j) = lim b[f(i,j),n] = b[f(i,j)]

Put simply, if all grey values of f have absolute value

between -r and r, then each pixelwise limit is equal to the value

of the original analytic function at the grey value of the input

image. Moreover, the result remains unchanged if f(i,j) = u(i,j)

+ iv(i,j) is a complex-valued image and the operations in the

image algebra are applied by means of complexification.

We now present some particularly important instances of

analytic macro-operators. In all cases, the fundamental point to

keep in mind is that each is expressable directly in terms of the

range induced basis elements.

EXP: The exponential function ez is analytic in the entire

complex plane. It has the power series representation

ez =X

k-0

The corresponding analytic macro-operator in the image algebra is

called the e:x:ponential operator and is defined by
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n

EXP (f, n) T fr
k-0

where the last basis product in the expression involves n

multiplicands. Note that each grey value of EXP(f,n) is a finite

series appro:.:imation to the exponential of the corresponding grey

value of the input image f; indeed,

[EXP(f,n) (i,j) - _
k-0

Moreover, since ez is analytic in the entire complex plane,

for each (i,j) in the domain of f, regardless of the grey value,

lim [EXP(f,n)] (i,j) = ef(i,j)

(Note that this limit is taken outside of the image algebra)

Example: Let f be the image defined by f(0,0) = 2,

f(0,1) = 0, f(1,0) = -1, and f(-1,0) - 1:

2

0

0 1 2 -1

Then EXP(f,2) is given by:

2. 5
[EXP(f,2)] (-1,0) = 1 + 1 + 1 5

22
"[EXP(f,2)](0,0) = 1 + 2 + 5

[EXP(f,2)](1,0) = I + (-1) + _

[EXP(f,2)] (0,1) = 1 + 0 + 0 = 1
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Hence, the output image looks like

2
1 1

0 1

-1 0 1 2

Now suppose we consider EXP(f,n) for arbitrary n. If

pi:elwise limits are taken then

lim [EXP (f,n)] (-1, 0) = e

lim [EXP(f,n)] (0,0) e2

lim [EXP(f,n)1 (1,0) e-1

lim [EXP(f,n)] (0,1) = 1

As noted previously, these limits take place outside the image

algebra.

COS: Like ez, the cosine function, cos (z), is analytical in

the entire plane, with

S~Z2k

CoS(z) = T=k
k-0

Consequently, the associated macro-operator COS is defined in the

following manner: If n is even, then

n/2 S~fak
COS(f,n) = (-I)k f 

.

k-O

=E[1,K(f)] OD~r ff]Q ®(ln/2T f ® Of]

If n is odd, then
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(n-i) /2

COS (fn) f - (-l) 2k)!

k-0
w

The reason for the complicated definition is that, in terms

of the power series representation for cosine, all odd terms are

missing. In order to maintain consistency, COS(f,n) must be

defined by using n + 1 terms (including the 0 term) of the

series. This means that, for n even, the actual series

representation of COS(f,n) will have n/2 + 1 terms.

As usual, each grey value of COS(f,n) is a finite series

approximation to the cosine of the corresponding grey value of f.

Since cos(z) is analytic in the entire plane, for each (i,j) in

the domain of f,

lim [COS(f,n)](i,j) = cos[f(i,j)]

Example: Consider the image f defined by f(0,0) - 7c/2, f(l,0) =

0, and f(0,1) = 1. Then the image COS(f,5) is defined by

(COS(f,5)] (0,0) = I. - (n/2)2/2 + (x/2) 4/24

[COS(f,5)] (1,0) = 1 - 0 + 0 - 1

[COS(f,5)](O,l) - 1 - 1/2 *t 1/24 - 13/24

As we did for the exponential macro, consider COS(f,n) for

arbitrary n. Then

!im (COS(f,n)) (0,0) = 0

lim (COS(f,n)f(l,0) = 1

lim (COS(f,n)) (0,1) = cos(l)

"SIN: The situation for the SIN macro is exactly analogous to that

holding for CO0; however, in this instance, the even terms of the
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power series for sin(z) are missing. As a result, we define, for

even n > 0,
n/2-1

SIN(f,n) = (-i)k f2k4 + i

k-0

For n odd,

f f2k+1
SIN(f,n) = (-l)k (2k + 1)!

k-0

For any (i, j) in the domain of f,

lim (SIN(f,n)] (i,j) = sin[f(i,j)]

It is important to pay attention to the relation between tho

analytic macros EXP, COS, and SIN, and the functions exponential,

cosine and sine functions which exist in whatever machine is

being employed for digital image processing. Let us uenoue these

machine functions by EXPONENTIAL, COSINE, and SINE, respectively.

Each of these machine functions is an approximation. For the

moment, suppose each is computed by a truncated power series

expansion wita a fi:x:ed number of terms, say N. Then for any

image f and for any (i,j) in the domain of f,

[EX?(f,N)] (i,j) = EXPONENTIAL[f(i,j)],

[COS(f,N)](i,j) - COSINE[f(i,j)],

[SIN(f,N)] (i,j) = SINE[f(i,j)].

In other words, the image algebra macro-operators produce,

in a pi:'elwise manner, the corresponding machine functions. As a

result, for a given machine, one can define machine macros

accordingly. These would be written EXPONENTIAL(f), COSINE(f),

and SINE(f), and they would be defined by the preceding

equations. If such an approach is taken, one salient point must

be kept in mind:

(EXPONENTIAL (f) (i, j) ef e(i, )
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since the machine function is a power series truncation defined

by the macro operator EXP(f,N). Moreover, similar comments apply

to COSINE and SINE.

Consequently, there is no macro operator ef(iJ) in the

algebra, nor can there be. Nor can there be a function ex in the

machine. As a result, nothing is gained by employing the

symbology EXPONENTIAL except for a certain simplicity when

employing the macro EXP(f,N). Moreover, the use of such a notion

would make the algebra machine-dependent, and machine dependency

would render the entire structure less effective. Therefore, we

shall not specify macros such as EXPONENTIAL.

Before leaving this section, an important point concerning

analytic macros should be made.

Suppose f is an image for which If(i,j)I < 1 for all (i,j)

in the domain of f. Consider the operator H defined by

H(f) = ®[E 1,K(f) } f]"

For any point (i,j) in the domain of f,

[H(f)] (i,j) - [1 - f(i,j)]-l

1
Now consider the function H(z) = T, which is

analytic in the open disk of radius 1 in the complex plane. This

function has the power series representation

Go

H(z) = zk
k-0

Hence, it induces the analytic macro-operator

n

S H0 (f,n) - fk

k-0

85



Of particular interest is the relationship between H and H0.

For any (i,j) in the domain of image f,

lira [H 0 (f,n)] (ij) - f(i,j)k
3i-O

- [1 - H

- [H(f)] (ij)

In a pi.:.elwise sense, lir H0 (f,n) - H(f). But this limit

relationship exists outside the algebra! The macro H depends only

upon the fact that R is a field; however, the pixelwise limit

involves the topology of R.

More can be said regarding the limit relationship. Since
1H(z) = holds for Izi < 1, the limit is only good for

If(i, j) I < 1. However, both H and H0 are defined for all images.

Once again, the algebraic character of the image algebra makes

itself felt. H0 and H depend only upon the manner in which the

field properties of the range have been induced into the algebra.

In fact, relative to the algebra itself, the notion of an

analytic macro is purely fictitious. Indeed, any image sum of

the form

n
I ak fk
k-O

makes complete sense. The relevance of the analyticity of the

inducing function b(z) manifests itself only outside the algebra.

Nevertheless, the formality of the notion does not render it

superfluous. On the contrary, the situation is analogous to the

relationship between the rational numbers, which can be e:xpressed

without reference to the Dedekind cut axiom (or some equivalent

a:-:iom), and the complete space of real numbers.

Note, moreover, that even going outside the image algebra,
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the notion of analyticity is only relevant to those images whose

grey values remain within the disk of convergence.

5 MTRIX TYPZ MACRO-OPVRITORS

In practice, one often works with images which possess

rectangular domains. An image which will be called rectangular

if its domain is of the form I x J, where I consists of a set of

n consecutive integers, say {x, %+1, ... , %+n-1 I and J consists

of a set of m consecutive integers, say { y, y+l, ... , y+m-l} .

In order to normalize matrix operations in the image algebra, we

shall call a rectangular image a matrix image if x - 0 and y -

-m + 1. The image pixels can be viewed as m by n matrix, though
it must be remembered that it is still an image. A matrix image

has the form

f(0,0) f(l,0) .. .. f(n-l,0)
f(0,-l) f(l,-l) . . " f(n-l,-l)

ýf(0,-re+l) f (l*,-m+1) f (n-l,-m+l))

The intention here is to embed the collection of m by n matrices

into the collection X of images in a canonical fashion. Using

this canonical injection, it will be shown that the standard

operations on matrices can be accomplished within the image

algebra. In order to simplify notation, we shall let F<m,n>

denote the collection of all m by n matrix images.

To begin with, it will be shown that matrix multiplication

can be represented in terms of the basis. To facilitate matters,

we shall let Rn denote the row of n grid points given by

• = { (", j), (1, j) , (n-l, j)
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Moreover, Cm denotes the column of m grid points given by

CRT I (i, 0),1 (it,-I),... (i,-_m+l)}

If f is an element of F<m,n> and g is an element of F<n,r>, then

we define the matri:.: multiplication of f by g in the usual

manner. If h denotes the matrix product, then h is an element of

F<m,r>, and for (i,j) in the canonical m by r rectangular domain,

A-1

h(i,j) =7 f(k,j)g(i,-k)
k-0

One should take care to note that the i determines the column and

the j determines the row.

The methodology to achieve a basis representation is quite

straightforward since the matri:x: product at (i,j), h(i,j), is

nothing but a dot product of the jth row of f with the ith column

of g. To accomplish this end, we select out the jth row of f,

that selection being S(f,Rn) . We also select out the ith column

of g, that selection being S(g, Cn). The latter selection is

rotated 90 *and then translated so that it has the same domain

as S (f,RP). The dot product of the resulting image,

T[N{S(g,Cnl) },O,-(i-j)]I

is then taken with S (f,RP). This dot product gives the value

h(i,j) . The e:xistential operator is then employed to produce an

image with a singleton domain, {(i,j)} and grey value h(i,j).

Tne outputs of the above procedure are then added (by basis

addition) to produce the desired m by r product image. Written

out, the basis representation of matrix multiplication is given

by

n-1 -Mij1 1 [DocS f,R;,),w{N[S~g,cp)I,o,- i-j) H, {(ilj)}

i-O J-C
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Henceforth, we shall denote the matri:x multiplication macro by
f*g.

Under basis addition, scalar multiplication and matrix

multiplication, the collection F<n,n> of square matri:x: images is

a linear algebra.

Before proceeding, we note that, for any matrix f in F<m,n>,

the transpose is given by D(f), the diagonal flip of ?.

Moreover, we define the identity of dimension n, I,, by

I,(i,j)- =[-

0 otherwise

for each (i,j) in the rectangular grid defining the canonical

domain for F<n,n>.

We now wish to demonstrate that determinants of square

matrix images can be found through the use of basis operations.

For a 1 by 1, the pro'lem is trivial. Suppose f is 2 by 2. Then

the determinant of f, det(f), is given by

det(f) - f(0,0)f(l,-1) - f(l,0)f(0, -l)

- G[S(f, { (0r0) H0o02. S(f, { (1,-i) I)-,'

S-GES (f, { (1,0) 1)-,. ()S(f, { (0,-i) }o,I)]

where G is the parameter e:xtractor. In general, for an n by n

matri:.:, the determinant is given numerically by

det(f) = 7sP f(0,-p(0)) f(1,-p(l)) .

f f(n-1) ,-p (n-1))

where:
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I
a. The summation is taken relative to real number addition.

b. The summation is taken over all permutations p(k) of the

n integers 0, 1, 2, ... , n-1.

c. SP is either +1 or -1, depending on whether the

permutation p is respectively even or odd.

In a direct generalization of the case for a 2 by 2 matrix, the

determinant in the n by n case has the basis representation

n-i
SITT S 'f,{k,-p(k))}) kp(k)

p k-0

where:

a. The summation is relative to basis addition.

b. The product is relative to basis multiplication.

c. The subscript denotes translation in the x-direction by

-k, and in the y-direction by p(k).

It should be noted that the macro-operators for matrix

multiplication and the determinant are somewhat peculiar in that

it appears that they require special types of input images. In

the first case, for f*g, the number of columns of f must equal

the number of rows g; moreover, each must be situated properly in

the grid. In fact, the situation is no different than for the

dot product macro Do, where the two input images must share a

common domain.

Regarding the determinant, the problem is a bit more

complicated. Not only must f be an element of F<n,n>, but there

is, in reality, a different determinant macro for each class

F<n,n>, since the definition involves the dimension n.
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Nevertheless, we shall continue to act as though there were a

single determinant, det(f), and we will not indulge in such

nuances as the writing of det,(f).

Our next goal is to achieve a basis representation for the

matrix: multiplicative inverse of a matri:x: image. We shall employ

the well-known adjoint method. Consequently, we must develop

representations of the cofactors. The cofactor operator, COF,

requires three inputs, a matrix image f and two integers.

COF(f,i,j) is (-l)i+j times the determinant obtained by deleting

the jth row and the ith column. (Once again, note the

interchanged roles of i and j.) For convenience, we define four

sets of pi:.:els:

a. B1, = {0, 1, ... , i-l} x {0, -1, ... , -j+l}

b. B2,, = {i+l, i+2, ... , n-l} x {0, -1, . .. , -j+l}

c. B3, j = {0, 1, ... , i-l} x {-j-1, -j-2, . .. , -m+l}

d. B4, = {i+l, i+2, ... , n-l} ) {-j-, -j-2, ... , -m+l}

A basis representation for the cofactor macro is given by

COF (i,i, j) 1) (li+i det[S (f ,B;, j)G(S(f,B?,ji

S S(f,Bý 1j) 0,

Once the cofactors have been constructed, it is easy to

define the adjoint matrix of an image in F<n,n>. Indeed, for f

in F<n,n>, the adjoint, ADJ(f), is given by the pi:-elwise

relation
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[ADJ(f)] (i,j) COF(f,j,i)

The grey value of the adjoint image at pixel (i, j), the pixel at

the intersection of the ith column and jth row, is given by the

cofactor which is obtained by deleting the jth column and the ith

row. Recalling that, for an element of F<n,n>, the diagonal flip

gives the transpose, a basis representation for the adjoint is

given by

ADJ(f) D[YI E (COFlfi,j),{(i,-j)})]

where the summations are taken relative to basis addition.

The adjoint method for finding the inverse of a matrix can

now be employed. Assuming f to be nonsingular, det(f) is

nonzero, then the multiplicative matrix inverse of f is given by

-det(f) ADJ(f)

Direct substitution yields a basis representation.

Perhaps the best way to illustrate the foregoing inverse

methodology is to work out an example in detail. Let f be the

following image:

0 1 0 1

-1 2 2 1

-2 0
0 2

f is an element of F<3,3>.

We first find det(f) by directly employing the basis

representation. There are six permutations of (0, 1, 2). These
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are:

P, = (0, 1, 2), with si - +1

P 2  (0, 2, 1), with 52 - -1

P3 - (1, 0, 2), with S3 - -1

P4 = (1, 2, 0), with s 4 = +1
PS - (2, 0, 1), with ss - +1

p6 - (2, 1, 0), with s6 -I

There are si:-. summands in the basis representation. The first is

given by

sl[S (f, { (0,0) H}oo ®S(f, {i,-)) -1 ®S(f, f (2,-2) 1)-2,21
= <2> 0 <2> 0 <1> = <2>

where < > denotes an image having singleton domain {(0,0)} and

single grey value. The second summand is given by

- (-1) [<l> 0 <1> 0 <1>) <-l>

The third summand is given by

S3 ISif, {(0,-1)})Oo,(DS(f,{1,o0)_-.oo(S(f, ((2,-2))).2,.,,
- (-1) [<2> 0 <0> 0 <1>] = <0>

The fourth summand is given by

<2> <1> <1> = <2>

- The fifth is <0> and the si:x-th is also <0>. Therefore, the basis

sum over p1 through P6 yields <3>. Lastly,

93



det(f] - G[<3>] - 3

We must now obtain the cofactors. We employ the following

sets in the grid:

B, 0 0, B8, 0  = 0, B, 0  - 0
B8,o { 0- ) (2,-1), (1,,-2), (2,-2))}

B10 0, B. 0  - 0, Bj,0  - (0,-i), (0,-2)
Bf, 0 ((2 ,-l), (2 ,-2))}..

Bj, 0 - 0, Bj,0  = 0,
Bj, 0 - (0O,-l) , (0,-2), (1,-1) , (1,-2), ,

BI, 0 -0,

B•..1 0, B,. -2 ((1,0), (2,0)},

B8,-. 0, B8,. 1  = { (1,-2) , (2,-2) },

B, 1 - ((0,0) }, Bf, 1  - ( (2,0) )

B,- - ((0,-2) }, Bf,. 1  - (2,-2)}

The remaining four collections of,

B•I -1 Bt. 2  , B , and Bj_2

can be found similarly.

To find the nine cofactors, we directly employ the basis
representation:

COF(f,0,0) = (_1)o+o det[O) 00(D0 (D
S(f,B8o )

since )(f,Bo - is given by

0 2 1
0 1
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C:OF(f,1,O) (- () 1 +0 detE ®0 S (f,)o,,

0D S (fE,B 0 )

- (-1) (2) - -2,

since )(feBj,O )0,10 h3(f,Bfo is giver: by

212 1

The remaining cofactors can be similarly computed:

COF(f,2,O) - 2

COF(f,O,-1) - 1

COF(f, l,-1) " 1
COF(f,2,-1) -- 1

COF(f,O,-2) a -2

COF(f,1i,-2) - 1
COF(f,2,-2) - 2

Applying the existential operator and basis summing nver the

indices gives the cofactor image:

0 1 -2 2
-1 1 1 -1

-2 -2 1 2

0 1 2

A
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The adjoint is found by transposing (taking the diagonal flip).

ADJ(f) is given by:

-0 -2

o -2 -

I 1 1

-1 0 1 2

A direct calculation shows that f*f-I - 13.

6. DZSCRETE PICTURE TRANSPORMS IN THE ZM= ALGZMA

If f is a rectangular image, then the discrete picture

transform involves a pre- and post-matrix multiplication of f.

In order to make this separate multiplication meaningful in the

context of the image algebra, some stipulations must be made.

In the image algebra, a rectangular image is one which has a

rectangular domain. However, matrix multiplication is only

defined for matrix images, those which are elements of F<m,n>,

for some m, n > 0. Prior to any matrix multiplication, the

rectangular image must be translated so that it is a matrix

image. Subsequent to pre- and post-multiFlication, it can be

translated back to its appropriate position. The original

translation must be T[f,-i(f),-j(f)], where i(f) is the minimal

value of i for which f is defined and j(f) is the maximal value

of j for which f is defined.

Any discrete picture transform requires two regular matrices

of a given form. If the input rectangular matrix is of

dimensions m by n, then the pre-multiplication matr•.x must be m

by m, while the post-multiplication matrix must be n by n.

Moreover, in order to employ matrix multiplication within the

image algebra, it is necessary to require that the
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pre-multiplication matrix, P, and the post-multiplication matrix.

C,, are elements of F<mm> and F<n,n>, respectively. This

requirement is merely formal, since the linear algebras F<mm>

and F<n,n> are ismorphic to the corresponding linear algebras of

regular matrices.

Given the preceding stipulations, a discrete picture

transform on the space of m by n rectangular matrices is.of the

form

As mentioned previously, the subscripts denote translations to

and from F<mn>. They play no role whatsoever in the actual

transform process. Consequently, we will employ the customary

discrete picture transform methodology:

%p(f) - p*f*Q

No generality is lost, since any procedure can always begin with

a translation and end with an inverse translation.

Note that the representation P*f*Q is easily corrected to a

basis representation, since * (matrix multiplication) possesses a

basis representation. Consequently, those image processing

operations which are of the discrete picture transform type are

within the scope of the image algebra.

If it happens that the pre-multiplication matrix P and the

post- multiplication matrix Q are nonsingular, then the discrete

picture transform is invertible; indeed,

f = p-l*%P(f)*Q-l

where, of course, P-I and Q-2 denote the matrix multiplicative
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inverses of P and Q, respectively, within the image algebra. In

other words, for nonsingular P and Q, 'P(f) is invertible within

the image algebrt

Some examples of the discrete picture transform will now be

presented.

a. ~Disc:te Vourier TreUsfez

The discrete Fourier transform (DFT) results from setting

P - F. and Q - F.,, where F P is the p by p image matrix with

grey values

F1p(k,j) -

at pixel (k,j), where i denotes the imaginary square root of -1

and 0 : k & p-I, -p+l :j : 0. Note that we are assuming the

complex values for pixels in the image algebra. Specifically,

Fpp(k,j) - -p cOS[pkj] + i-1 sin[pkj]

Also note that F~p(kj) is not given by the exponential to a

negative power. This is because the row number j is already

negative in the grid enumeration scheme. Now, for f in F<mn>,

the DFT is given by

'P(f) - FM*f*F M

Since F., is nonsingular, inversion is given by

f(f) - F•*T(f)*F-
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b. Radamaad Transo•m

The Hadamard transform results from the discrete picture

transform by employing the Hadamard matrices HJJ, where Hjj is

situated in the space F<J,J>. Since Hjj is nonsingular, we have

the transform pair

-HP m f * H,,

and

f - Pg*t 'P(f)*H-l - 1'-H*F)Hr

Other commonly employed instances of the discrete picture

tranform are the Haar transform, the slant transform and the

discrete cosine transform. All of these are of the form, P*f*Q,

with P and Q nonsingular.

Prior to leaving this section, several comments are in order

regarding transforms such as the DFT and the discrete cosine

transform. In the DFT, it is necessary to employ the matrix whose

terms are given by

C (k,j) - 1 3 cos2-kj]

Assuming the irrational number X to be given by some fixed

rational appro:imation, there still exists the computation

problem relative to the cosine. Of course, we could assume that

the function COSINE exists within the machine; however, as

demonstrated earlier, this function can be treated as a

particular case of the analytic macro-operator COS(f,N) for some

N. In particular, for any value x,

* cos(x) -GCOS(<>

99



where

(i) G is the parameter e:xtractor.

(2) <::> denotes the image with singleton domain {(0,O)l and

single g:^ey value x.

(3) N is a fixed integer value which corresponds to whatever
power series approximation is being employed to compute

the value of the cosine.

Similar comments apply to sin(:) and e@1 :x real:

sin((:.:) - G[COS(<x>,N)]

e- G(EXP (<x>,N) .

As a result of the foregoing considerations, the Fourier
cosine matrix C. can be generated within the image algebra
starting with the matrix image whose grey values are given by

zw(k j) - kj,

for k - 0, 1, ... , p - 1 and j - 0, 1, ... , -p + 1.

The matri:x' image C. is given by

CIV- WI CoS [2pZp,, N]

A similar relation holds for the Fourier sine matrix. Moreover,

if appropriate complexification technicalities are taken into

account, the Fourier matrix can be written as

FPP - pIEXP[i~p z,,N]
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one can even go to a lower level of the algebra and consider

image matri:x construction within the algebra. By this we mean

that, given the integer p, a matrix of the form z. could be

produced by using image algebra operations. Indeed,

* p-i -pel

-~ E I Ekj,((k, J))I

In other words, the DFT FM*f*F can be looked upon as a

unary macro-operator within the image algebra. We can say this,

since the dimensions of f, m, and n can be found from f by

staying within the algebra, and m and n are the only external

parameters required to obtain z. and z,..

7. BASIS RZPRDZSITATZON Or CONVOLUTION

In the previous section, numerous macros were given in the

image algebra. Most of these macros were simple, in that their

representations in terms of the fundamental operations were

almost obvious. In this section, one of the many more

sophisticated image operations will also be given in terms of the

algebra. The crucial operation of convolution has been chosen
for this representation.

Let f and h be images with finite domains; that is,

f, hEY -e PA
AcZxZ

* card A <

Recall that the convolution of f and h is denoted by f*h. The

* representation of convolution in terms of the fundamental

operations, and in terms of previous macros, proceeds in three
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steps:

a. First find the 1800 rotation of h using the macro
N2 ; translate the result by (i,j), and multiply the
resulting image by f, using macro M, and then translate

again, this time by (kin), to obtain

uii(k,n) = T(M(T(N2(h) ,i,j) ,f) ,k,n)

b. Ne:.:t sum all the uij(k,n) using basis type addition® ,

and then, from this sum, select the image at {(i,j)}

utilizing the macro S. Call this quantity gii. Hence,

gii S • uij (k,n),{ (i, j)

k, n-

At any fit:ed pixel, only a finite number of non-empty images

uiJ(k,n) are involved, and, therefore, convergence need not

be discussed for the seemingly infinite sum above.

C. Fi.nally, e:.:tend all the g•i together, using the macro

to form the desired convolution f*h:

f * h = E (g 00, E(go0, E(go-, .

Notice that only a finite number of e:x:tension operations

need be employed above because f and h ha,,e finite domains. An

e:.:ample will be given to illustrate the steps involved. This

same problem was given in the following example.

E:.:ample:

Let the image f be given by -- _
2

0 0 2
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and the image h by

2

1 -i 3
h-

0 2 4

t0 1 2

The convolution of f and h will now be found, and each step will

be illustrated, utilizing the above images. Rotate h by 1800 and

let the result be u:

1

0 4 2

u = N1(h) = -1 3 -1
-2

-2 -2 - 1 10

Next multiply f and u to obtain C:

1

a = Z(f,u) - 0 4
-1

-1 0 1

Find all translates of a and add them

- ... ( Q10 (G) -B-4

This gives the image B (which is identically equal to 4

* everywhere)
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Select from B the image g0O consisting of the value at

(0,0), g00 = S(B,{ (0,0)M}. A translation of the rotated image

given previously will be performed, and many of the steps

repeated. So translate u one unit to the right; thus

u= T(u,1,0)

Ne:-:t, multiply f and u_0 to obtain the image s, where

s = M(f,u 1 0 )

2
1

0 8

Find all translates of s and add them together to obtain'

t - ... G soG sloG ...

Finally, select the image g 10 which consists of the grey value of

t at (1,0); g10 - sit,((1,o)}]

2

1

0 1 2

Another translation of the rotated image will be conducted and

again many of the steps will be represented. Translate u by two

units to the right to give u 2 0 :u 20 - T(u,2,O0) Next multiply f

and u 20 to get T: T -m(f,u2)

2
1
0 16

S1 2 3
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Find all translates of T and add them together to give

a~ ~ (2 To,. (D ®3. 0rQr +Q .. 16

Select from a the image g 20 made up of the value of a on (2,0).
g20 S,{ (2,0) A. large portion of the procedure is again

repeated. Translate u one unit to the right and one unit up:

ujl = T(u,1,l) . Next multiply f and ul, to get r - m(f,u 11 )

2
1 4 6
0 6 -4

10 1 2

Find and add all the translates of r together to obtain

v --... G)-® r (D ro1( r1o® () ® ... - 12

Select the image g"1 , consisting of the grey value of v at (1,1):

g= (v,{(II)})

2

1 12

0
0 1 27

The procedure is again repeated. Translate u one unit up:

u 01 = T(u,0,1). Multiply f and u01 to obtain the image X.

x = M(f, u 01 )

2

a -2
" 01 2

0 -2
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... . - . . ... .

Find all translates of x. and add them together to obtain

y .. ® 0 :o0 :.~ 1 . -0

Select the image g01 , consisting of the value of y at (0,1)

gol = (y, (0, 1 )

2
1 0
0

0 1 2

The procedure is repeated again. Translate u two units up: U02 =

T(u,0,2). Ne:.:t multiply f and u 02 giving w: w = M(f,u 02 )

2

-1 -i

0

10 1. 2

Find all translates of w and add them together to yield the image

e = ... Ow2wo ... -,-1

Select the image g02 consisting of the grey value at (0,2) from e.
02 = S(e,{ (0,2))

The procedure is repeated for a final time. Translate u two

units to the right and two units up. U 2 2 = T(u,2,2). Multiply f

and u 22 giving the image d:

2

d= M(f,u22 ) = l 9
0

0 1 2

106



Find all translates of d and add them together to get

(, d® 2 d o,® . -9

Select the image g2 2, consisting of the grey value at (2,2) from

11:g 22 = S(l, { (2,2) }) gives the image g 22 . The last step is to

e:a-tend all g•i together to obtain the desired convolution of f

and h.

f * h = 8(goo, E(g1G, F(g20, E(g"1 E(go' ..... ))

and so on.

8. CHARACTERIZING THI MACRO OPMATIONS

The pu:7pose of this section is to provide several ways of

categorizing the macro operations. This characterization will

involve objective, as well as subjective, attributes of the

operations, in addition to mathematical and heuristic criteria.

This characterization is useful for knowledge base systems

involving the imaging algebras, as well as for autonomous image

processing algorithm development.

First and foremost, any macro operation can be grouped

according to its arity; that is the ntmber of operands in its

defining definition. Further classification is given by

specifying the type of inputs utilized and the output sort which

results. For the input, the order of the operands is also of

prime concern.

Example

Referring to the previous sections, it is seen that a

(relational) data base could be established involving the above
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type of information. An instance o- this schema is given in

Table C-2.

TABLE C-2. OPERATOR SYNTAX

Name of Arity Domain Types Output

operator operation arguments Sort

1 2 3 4

Addition G 2 image image - image
(fundamenta2)

Translation T 3 image integer integer image

Domain Finder K 1 image - - subset

of ZxZ

E:.:istential E 2 real subset - - image

of ZxZ

Unity image 1 A 0 - - - image

Subtraction Q 1 image - - - image

As stated in this table, Addition is a binary operation,

since its arity is 2 with both inputs being image, and with

output also an image.

A polyadic graph (Figure C-5) is another useful way of

representing the information contained within the flat file

illustrated in Table C-2. This graph involves arrows with many

tails corresponding to the arity of the operator. The head of

the arrov. points to the sort of output, which is indicated by

using an oval containing the type of output. Each tail is also
attached to an oval containing the sort of input utilized in the

operation. For operators involving more than one sort of input, a
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slash mark is given to the tail to indicate the order within the

operation. This is illustrated in Figure C-5.

Translation

Subtraction

Unity

Image Image Integer

-Domain Finder

Existential

Real

Figure C-5. Polyadic Graph
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Equivalence classes of macro operations are established,

utilizing this recording system. The partitioning procedure is

of prime importance in syntax: specification and program

correctness.

A distinct way of partitioning and therefore characterizing

these operations involves the nature of the function. Every

operation described herein involves a (digital) image among its

inputs or as an output. This motivates the following

terminology. A macro operation is said to be an image creatijn

macro or a creation macro if only the )utput involves an image.

A macro operator is said to be an image transformation when both

the output and input involve images. Finally, when only the

input of a macro involves an image, then the macro is said to be

a parameter determination macro.

Example

The translation, rotation and division operations are all

transformation macros. The existential operation as well as the

zero image are image creation macros. Finally, the domain finder

and grey value determiner are both parameter determiner macros.

In the former case, the parameter is a subset of ZxZ and, in the

latter, it is a real number.

As indicated above, parameter determination macros are

further broken down by specifying the type of parameter which is

measured. In a more arbitrary fashion, transformation macros are

further characterized: A transformation macro is said to be

domain increasing if there exist image operands f 1 ,f 2 ,.. .,f in

addition to other possible inputs, and for i 1 1,...,n the

cardinality of K(fi) < cardinality of the output domain.

Example
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The fundamental addition operation is a domain increasing

transformation since

I1(0 0)) G 0((, 0)) - g

9 0 1 0

a.id card g = 2 > card 1((0,0)) - card 0((3.,0))

The fundamental division tranformation®, translation T, and
the subtraction macroGare not increasing.

In a similar manner, a transformation macro is said to be

domain decreasing if there exist image operands ftlf2,...,fn, in

addition to other possible inputs (if any), such that, for i -

1,.. .,n, the cardinality K(fL) > cardinality of the domain of the

output i 1,2,. ... ,n.

Example

The fundamental division operation is domain decreasing

since G •(0.0))- 0 and card 0(o,0)) - l, whereas cardinality

nf 0 - 0 Notice that the selection macro S and the

addition macro are both domain decreasing. Both the fundamental

operations vi translation and addition are not domain decreasing.

It should be noted that thee exist operations which are

both domain increasing azid domain descreasing as the following

e:ample exemplifies.

Example

C

Consider the divide type of macro Q where Q: X :.: X -. x and
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f(:x-:y)/g(xy) g( ,y) 0 0, (0,y) * A r) B

Z )g Z(#,y {,y) a A B
g) (::y) 1 i / g(:.:,y) g(:.:,y) - 0 and (xy) a B - A

lundefined otherwise

with A - K(f) and B - K(g). It follows that

Q (f 0g) - fO0 (®Gg) f m g

in any case, using Q(l(0o0)), l(i.t0))) -1010(10M

1

0 1 1

shows that Q is domain increasing, while Q(0((0,0)),O((00))) -0

shows that it is domain increasing.

Another important concept is that of domain stability. A

transformation macro is said to be domain stable if it is not

domain increasing or domain decreasing. Specifically, domain

stability means that, for all possible sets of input operands

f, f2,...',f, and all other sets of inputs (if any), there exists

an input image fi such that cardinality of K(fj) - cardinality of

the output.

Example

Notice that the translation, rotation and flip operations

are all domain stable, as is the scalar multiplication macro.

Two special types of domain stable transformation macros

will now be defined. Both happen to be illustrated in the above

e::ample. The first type of domain stable transformation is called

a rigid transformation. Intuitively, this type of transformation
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takes an image in X and only moves it to yield another image in

X--no operation on the grey values is performed. Normally only
doma'n induced operations are utilized in areatiag these types of
operations. More rigorously, Q, is a domain stable

transformation said to be rigid means that Q is expressible as a

term involving only the fundamental operations of translation T,
900 rotation N and diagonal flip D; that is, Q is definable under

function composition, utilizing only the operations T, N, and D.

IZample

Consider a transpose type operation Q on images, where

Q: X -+ X and Q(f) (xy) - f(l-y,2-x).

In particular, if 2 3 -1

1 2 4f=
00 1 27

0 1 7

it follows that
1 [3 2 1

Q(f) 0 -1 4 72 1 2

Furthermore, Q(f) - T(D(f),l,2). As a consequence, the

transpose operation above is a rigid transformation.

* The second type of domain stable operation is called domain

invariant. It is defined for operators requiring a single image

input and, as the name suggests, this type of transformation

macro must have an image output whose domain equals the domain of

the input image.
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X mI*e

Let us find all domain stable transformations which are at

the same time rigid and domain invariant. The first thing to

notice is that, by repeatedly employing either D or N to a given

image, at most only eight di&*fqrent images result (including the

original). This discussion is related to the previous

presentation on the octic group. An instance of the eight

possibilities is given below in Figure C-6.

fIf N( f

2 2 1 1

0 13 1 3.0 1 1
1 0 1 3 1 2

NI(t) NI(f)

1. 0 1 a

010 -1I-2 - 0 -j 1 1

D(f) N(D(f)) a F(f)

o 1 1 0 1 1 1
-1 - I -1 1

-2 1 -2

D(N(-)) -v N-- -)-- U

-2 12 1
2- -1 0 1. 22

0 1. 1 1 1 31

Figure C-6. Optic Group
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Furthermore, it should be noticed that the translation

operation is of no value in mapping any of the images in Figure

C-6 (e:.:cluding f) into an image with the same domain as f.

Translations applied anywhere will yield images with the same

basic shapes as those illustrated in Figure C-6. This follows L

observing that there always e:ists integtrs i and J, such that

T(N(T(f,p,q)),ij) - N(f),

and there e-:i3ts ii.tegers iV, and j' such that

T(D(T(f,p,q)),i',J') - D(f).

This sh;ows that utilization of translation in the midst of

employing D and T will be of no value; that is, the only images

obtainable under function composition involving T, D and N are

the eight images depicted in Figure C-6, aloig with their

translates. It follows thr.t the only rigid domain invariant

transformation macro is the identity operation 1, where I(f)(:x,y)

- f(:x:,y).

The immediate discussion will be concluded by way of an

e:xample illustrating a domain stable transformation macro which

is neither domain invariant nor rigid.

Example

Consider the macro operation Q where X -* X and Q(f)(:xy) -

2f(y,:.:). Then

"Q(f) - (2 A U(f))

For instance, using f as given in the ex:ample yields the image.
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212

QMf = 0J2

10 1 2

and so card K(f) = card K(Q(f)) which shows that Q is a domain

stable transformation. However, by E.:ample, Q(f) is not

obtainable as a term from f using ND and T, and so Q is not a

domain invariant transformation, and it certainly is not rigid.

This ends the ex*amnple.

An additional, perhaps obvious, way of characterizing the

macro operation is by name. Names are often indicative of

purpose. For instance, all addition type operations shou..ld be

grouped together. In this grouping, there would appear: the

fundamental addition operation®D; the intersection type addition

macro, the Minkowski addition operation ES, etc. A somewhat

similar type of characterization would arise by grouping macros

according to purpose. it should be mentioned that actual

physical grouping is not what is intended hero; rather, it is the

(logical) linking together of the information. Conventional data

base-data structure techniques such as linked lists or relational

structures could be used for this purpose. Additional so-called

AI techniques such as semantic net or frame structures would also

be appropriate. An ex.ample of a semantic net structure

incorporating some of the information illustrated in this section

is given below.

Example

Consider the transformation macros, a,® , T . Then a

semantic net representing some properties of these operations is

given in Figure C-7.
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Transformation Transformation Transformation

decreasing increasing stable, rigid

as has has has

domain domain domain domain

a G T

has arity is a is as a s a

has has

arity arity

addition maximum hift

macro macro type

has 3

arity

Figure C-7. Semantic Net Diagram
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The same information given in the Example is again provided,

using a relation data base flat file in Table C-3. The benefit

zf the latter approach is immediate.

Example

TABLE C-3. FUNCTION TYPE

Macro Type of Nature of Function

Operation Operation Arity Creation Transformation Parameter

Symbol Type Type

a Add 2 Decreasing

O Add 2 Increasing

0 Maximum 2 Increasing

T Translate 3 Stable-rigid -

Other types of groupings are of equal importance to the types

mentioned above. For instance, grouping together: arithmetic

operations, or logical-lattice type operations, or morphological

operations, or even data base-type operations, such as the

extension macro operation E and the selection macro S.

9. MATICKATICAL IN4DUCEMNT OF BASIS

OPERATORS IN THE IMAGING ALGEBRA

Earlier, it was mentioned that several of the fundamental

operators in the image algebra were either range or domain

induced operations. However, these notions were not defined.
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In this section, the meaning of range inducement will be

* given and illustrated. 'This is followed by the definition of

domain inducement. it will then be shown that the fundamental

operations of translation, rotation and reflection are all domain

induced.

It was previously seen that one of the principal reasons for

dealing with induced operations is the simplicity in which

polynomial term specifications of image processing operations and

algorithms can be determined. An additional reason for utilizing

induced operations is in variety specification. Here a very

important theorem is proven, showing that range induced

oloerations commute with domain induced operations. A consequence

of this result is that any of the domain induced fundamental

operations (mentioned above) commute with any of the other

fundamental transformation. operations.

The operator R. is said to be range induced by r if:

a. r is an n+k ary function n ýt 1,k Z 0, with

r: Bn B, -. *. Bk -+B

b. R.: t(..BH ]ft B3 :. Y . Bk -+4 B
11CA IIC-A

C. for any f1L in U.BH, i - 1,2...,n and bj inj

it follows that

R. (f1,f2, . . fnrbj 1 b 2 , -.. ,bk) (:)

for all the points where each fi(.-.) is defined at the same time.

If every fi is defined on the same domain; that is fi e BA for i

119



- 1,2,...,n, if

R : (BA) n . 5% L ... Bk - BA

and if R is range induced, •.her.

R (fl ff2, ... ,rf ,?b1, .. ,bk) (Y.)
r r(f (..) .. . f ( ) n ,bl, I . bk)

for every in A. For the more general case cited in the

definition, the equality need only hold in the intersectien of

the domains of the functions involved.L The intersection of these

domains herein is called the common region.

Example

Notice that the unary operation of subtraction, r = -, is

such that

- : R-RR

As a result, the macro subtraction image operation R - ®, where

UP.' -4 R
HcZZS HCZzZ

in the imaging algebra is range induced by - , since

[ (f) ! (u,v) - -f(u,v)

Example

Consider the binary addition operation, r =

+: R x R -4R
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The macro imaging addition operation for images is range

induced by +. This follows since

a U RH U R" RU

and HCzCz HCZMZ j1zz

a(f,g) (uv) - f(u,v) + g(u,v)

for all pi:-:els (u,v) in the intersection of the domain of f and

g. Recall that a is not defined elsewhere. If the ope'rator

happened to be defined elsewhere in an arbitrary fashion, it

still would be considered to be range induced.

Example

Again consider binary addition as in the last e::ample. The

fundamental addition operationDin the algebra is also range

induced by +. This follows since

Q: U RB x: U R5 .-, U RH

and Hcz- RC31

(f G g) (u,v) f f(u,v) + g(u,v)

for all points in the intersection of the domains K(f) of f and

K(g) of g. Thus, the common region here is K(f) n% K(g). Recall

that (fQg) (u,v) was (heuristically) defined as

(f( g) (u,v) - f(u,v)

for (u,v) e K(f) - K(g) and

(f g) (uv) = g(u,v)

for (u,v) e K(g) - K(f) and was undefined elsewhere. The way
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Sis defined outside the common domain of its operands f and g

is irrelevant to the inducement process.

In an analogous fashion, it follows that the fundamental

multiplication operation is range induced by the multiplication

of the reals, and the fundamental maximum operation@ in the image

algebra is induced by the maximum operation v in the real

lattice.

Example

Consider the reciprocal partial operation on the reals.

Here

-6: Ro -+ Ro

where R0 = ( U ,0)i.(0,o). This operator range induces a type

of division operation ER on a subset of images where

ES URU URH
itcZzZ 0 Mc:Z5 0

Therefore, E only operates on images which have arbitrary

domains K(f) and no grey values equal to zero. Notice that

1

IBf (uv) f(u,v

for (u,v) in K(f) and is undefined elsewhere. Notice that the

fundamental division operation® in the imaging algebra is an

e:x:tension of the division operation 9 . Furthermore, on

the e:x:tended domain of® that is, for those functions f in URH

which have at least one zero grey value, the operators M and®

provide the same answer when applied to f restricted to the

domain equal to the support region of f. Because of this, we say

that D is a support extended extension of a range induced

operation induced by +.
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The function D, where

D: U B. A:-...:.: A,. UB

is said to be domain induced by the operation d where

d: A A A1::.....: A -+ A, if

D [f,a 1 ,a 2,...,a,,_] (a, ) , f[d( ,a 1 ,a 2 , .. ,a0_1 )

Example

Let d be the real vector type (binary) subtraction of two vector

tuples, thus:

d: (ZXZ) : (ZxZ) -+ (ZXZ),

where

d( (u,v) , (i, j)) - (u-i,v-j)

TV i: function induces (up to isomorphism) the fundamental

op* tion of image translation; indeed,

D = T, where D: URN -. (ZZ) -4 URR
NCZRZ UCisi

Here n'= 2 and so

A, = A - (ZxZ)

* and B = R. Thus,

U RR
a NCZzZ

is the set of all images described previously, and the

123



translation operator is

T(f, (i,j)) (uv) - f(u-iv-j)

Example

Suppose

d: (Z::Z) -4 (Z::Z)

where

d((uv)) - (v,-u)

Then d is a (unary) operation on vectors. This operation

corresponds to the matrix (rotation) operation.

(0 -1)

on the column vector

Notice that n' - 1 in this case, and if B - R and D - N, then the

fundamental operation of counter-clockwise 90* rotation is

induced. Hence,

N: UR- URI
HCZEB Ncalx

where

N(f) (u,v) f(d(u,v)) f(v,-u)

Example

Define d in the above example as
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d((u,v)) " (-v,-u)

Then this operation corresponds to the idempotent matrix

operation

02 1)
on the column vector

VU)
The domain induces operation on images is the fundamental

diagonal flip operation D where

D(f) (u,v) - f(-v,-u)

Among the numerous benefits of employing an algebra whose

fundamental operations are induced is the fact that range induced

and domain induced operators commute. The precise statement of

this fact is given below in Theorem 1. Utilizing this theorem

along with the commutativity of domain induced operations and the

extension operation provides more powerful theorems (such as

Theorem 1) on the commutativity of operators in the image

algebra.

If R is a range induced operation and D is a domain

induced operator, then these operations commute on the common

region.

" "Comment:
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Recall that the common region consists of all points in

the intersection of the domains of the function fjf2,...,If

used in range inducement. In the common region,

R (fjrf2, ... ,fa,tb j,b2,..-.,bk) ( )

holds true. No restrictions are needed in domain inducement:

here.

D(fpaj,a 2,a .. ,a..) (:-.) - f(d(..,a,..

The proof will be given with the help of the diagram (Figure C-8)

given below. Specifically, it will be shown that this diagram

commutes; that is, by traversing it first to the right and then

down (paths 1,I) gives the same results as if it were traversed

first going down and then to the right (paths III, IV).

(f 1 'f 2 1 ... "f.) E URRZ f " URI'P

Path I

Path III D xD .:...x D Path II

/(f f~f~Path IV - /R
ý(. , f•.. . f,,) e (U R"), f" GL..R,

Figure C-8. Commuting Diagram of Domain and Range Commutativity

When f* and h are restricted to the common region, we will show
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that they are equal; that is, using

f " R(flf 2 , ... ,ff, b1 ,b 2, . •. b)

and

h - D(f,al,a 2 , . ..

along with

f; - D(faj, ... , an*-,) i I r,2,p...,in

and

f, f • • •,f,b 1 'b 2, k . )

we will show that

f(:)- h(x)

for % in the common region.

By traversing the diagram above along path I and using range

inducement gives

f(:: - r (f I :) f 2 :) . . f ( ), bl, . ,bk)

then using path II along with domain inducement yields the fact

that

h
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This, of course, holds in the common region mentioned above.

Ne::t, if the diagram is traversed first along path III and
domain inducement is used n times, then,

Then traversing path IV and using range inducement gives

If, in this e:xpression,

is substituted, it is seen that f*(x) - h(:.), thereby
concluding the proof.

Let R be a range induced operation, yielding an image
whose domain is the intersection of the domains of its image

operands. If D is a domain induced operator, then R and
D commute., along with

f- D(fi,a 11 ... ,a,.,.) i -

and

f- R(f*,f,. . .,f•,b 1 ,b 21 .. ,bk)

we will show that
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for in the common region,

By traversing the diagram above along path I and using range
inducement gives

f (:) - r ( f• 1 :: fa 2 :) p • fn (-x), b•, p P. bk)

then using path II along with domain inducement yields the fact

that

This, of course, holds in the common region mentioned above.

Example

If the range induced operator R is a, the add macro, then a
commutes with any domain induced image operator D. So, for

instance, a commutes with translation T, 90* rotation N, and

reflection D. Thus,

T( a (f,g),i,j) - a (T(f,i,j), T(g,i,j)),

N( a (f,g)) - a (N(f), N(g))

and

* D( a (f,g)) - a (D(f), D(g))

Similar results can be given for the multiplication macro M, as

"well as the higher macro H, lower macro £ and numerous other
a

macros.
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One of the immediate goals will be to show that any domain

induced image operation commutes with the fundamental binary

range induced operators in the image algebra. In order to show

this result, it will be shown that these operators are comprised

of more trivial operators, all of which do commute with any

domain induced operation. First it is noticed that the three

fundamental binary range induced operations are representable as

terms using the composition macro and certain other range induced

operations discussed in the previous example. This result is

given in Theorem 2.

Theorem 2:

The fundamental operations of addition, multiplication

and maximum have the respective representations:

fQg = e(e (a (f,g),f),g)
fDg = (E (M (fg),f),g)

fQg = e(E (H (f,g),f),g)

The proof of these representations follow directly from the

definition.

Ne::t it will be noticed that £ commutes with any domain

induced operation.

Theorem 3:

If D is any domain induced operation in the image algebra

and C is the composition operator, then these operations

commute; that is,

E( D(f,a1 ,a 2, . . , a ,),D(g,a l ,a 2, . . . ,a,- )

- D(E(f,g) ,a 1 ,a 2, .... ,)
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The diagram (Figure C-9) below will be shown to commute. Here

it is assumed that

f E RA and g E R3 with

A,B C Z:xZ and aiE Ai, i - 1,2,.. .,n'-l.

(f,g) e RA . RR b CR

D

S(l,m) CUR:. URN Uh,
HCZzZ NCZzZ NCZZ

Figure C-9. Commuting Diagram

First, traversing this diagram from left to right and then down

gives

h D(b,al,a 2 ,. . . ,ani) - D(e(f,g) ,al, a 2 , ... ,,-,)

where

Sv e A
£(f,g) (v)= Lg(v) v e B - A

and v denotes the two tuple (:,y). Using domain inducement

gives

f(d(va 1,a 2 ' . 'a,,,) ) if d(v, a,, . a.., 1) A
h(v) 1. g(d(v,aj,a 2,...,an0_-)) if d(v,a1 ,...,an,. 1 ) C B - A
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Ne:*:t, traversing the diagram down and then to the right gives

p = £(1,m) = e(D(f,a1 ,a 2,.. ,a,) ,D(g, a1 ,a 2, ,a,. 1)

Using the domain inducement gives

1(v) = D (fa,, a 2 ,.. , ,a,-) (v) = f (d (v, a,, a..,a,1 ))

and

m(v) = D(g, a1 , a 2, . ,a,,,-) (v) = g(d(v, a3, , an,.)

Therefore,

p(v) - h(v)

Theorem 4 :

Any 'of the binary range induced fundamental image operations

commute with any domain induced image operation.

The proof will be conducted for addition; the proof of other

binary range induced operators are identical. It will be shown

that, for any domain induced operation

D (f Gg) = D (f) (DD (g)

By employing the representation given in Theorem 2, we have

D (fDg) - D (6(.(a(f,g),f),g))

Utilizing the results of Theorem 3 gives
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D(f g) -e (D(e(a(f,g),f)),D(g))

Applying this same theorem again gives

D (fQg) = £(e(D(a(f,g)),D(f)),D(g))

Lastly, apply Theorem 1 to obtain

D (f a g) - (E(a((D(f),D(g)),D(f)),D(g))

By again using Theorem 2, it is noticed that the right hand side

of the above expression is

D(f) QD(g)

thereby concluding the proof.

This section will be completed by showing that the

fundamental division operation also commutes with any domain

induced image operation.

Theorem 5:

The fundamental image operation of division commutes

with any domain induced image operator.

Proof:

Let h = Of and let g = D(h,al, a

* Also let

"b =D (f a,,

and

g* -Gb
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It will be shown that g = g*. Let f E RA C Z:.:Z, and notice

that

{i/f(v) whenever f(v) * 0 in A
h (v) = undefined otherwise

Here again, v denotes the pixel (x,y). Therefore,

S( D((1-vjala 2, ... ,a._.l) when f(v) : 0
g(v) = elsewhere

1undefined

By using the domain inducement, we get

f (d (vaa a, ) when f(d(v, a,..l.,a,,_,1)) 0
g(v) = f 1'2'''a) elsewhere

Lundefined

On the other hand, using the domain inducement for b gives

b(v) - f(d(v,a1 ,a 2, . . a,.-)

Finally, using the reciprocal operation provides the desired

result:

" ~1
g*(v) f (d(v, al, a 2, .. ,a,.)) when f(d(v,al,... . • 0

,undefined elsewhere

10. ON THE VARIETY OF THE IMAGE ALGEBRA

On the various laws and identities specified by equations

hold in the algebra developed herein. Many of these identities

occur due to the inducement process as was the case for the
commutativity of range and domain induced operations seen in the

last section.
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Numerous laws such as the associative law, the distributive

law, and so on are satisfied by various operators in the algebra.

As a consequence, numerous sub-algebras exist within the image

algebra. A few obvious sub-algebras within the image algebra will

be noted below.

Under the fundamental addition® or multiplication®, the

set of all images form a commutative monoid. This follows since

the equational constraints given next are satisfied.

Al) Associative Law: f, G (f 2,® f,) -- f®f 2) ® f3

A2) Ze::o Law: f®0 = O0f = f (0 is the empty

image.)

A3) Commutative Law: f ( g = g ) f

and

M1) Associative Law: f1 (f 20 f 3 ) = (If, f2 ) ( f3

M2) Identity Law: f00 = 00f = f

M3) Commutative Law: f 0 g = g ( f

These structures are not groups, since there is no inverse

operation for either G or®.

There also is a sub-structure within the imaging algebra

which is a join semi-lattice with a least element. This follows

by using the set of all images X along with the fundamental

* maximum operation Q since the following identities hold.

Ji) Associative Law: fQ (gQ h) (f (DQ g) (Q h

= J2) Commutative Law: fQ g = g® f

J3) Idempotent Law: f 2 f = f
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J4) Least Element Law: f® 0 = f (0 is the empty image)

It obviously follows by symmetry, using the minimum macro

that there also e::ists a meet semi-lattice with greatest element

within the algebra. However, it is easily seen that (X, ( G)

is not a lattice. This follows using the counter e:x:ample given

in the following example.

Example

The absorption law: (f G g) ®g = g need not hold in the

imaging algebra. If f = 0((0,0)) and g = 1((,,0)) then

1

(f®g )®g 0 0 1

Many other sub-algebras exist within the image algebra. One very

rich structure is that of a vector space. Specifically, if we

let VCX=UJRB, B C ZxZ, where V = Rk, A * 0, then V is a vector

space over the reals where image addition: ® is the vector

addition and the macro A is the scalar multiplication and the

eight axioms hold:

V1) Associative Law For Vector Addition:

: (y zG) = ):.:y) (z

V2) Identity For Vector Addition: there exists a unique

element 0 A in V called the zero image, such that

(D (Ox:) - 0. for every image x.

V3) Inverse For Vector Addition: for every x in V there exists

a unique image ((2:.:) in V, such that
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:.:(G :,) -

V4) Commutative Law For Vector Addition:
:':GDY - Y(D:':

V5) Associative Law for Scalar Multiplication:

ab A• :=: a A (b ( :') (a,b are scalar)

V6) Identity for Scale: Multiplication:

1 A x = x, for every - in V

V7) Distributive Law For Vector Addition:

a A (.:-Qy) = [a A I] ( [a A y]

V8) Distributive Law For Scalar Addition:

(a( b) A :-: = [a A :-:] I [b A :-:] (a,b are scalar)

We will conclude this -;ection with another very rich

structure within the image algebra. This structure involves two

domain induced operations.

Consider any image f along with the fundamental operations

of rotation N and reflection D. Let S be the set of all

images obtal- d by successively employing the operator N and D to

f. This structure is an octic group with generator elements N

and D. A graph of this octic group is given in Figure C-6

involving image f and macro operations N2 ,N 3 ,V, F, and U.
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APPEDIDX D

NAMES AND SA1PL.S Or COLLECTED

IMAGE PROCESSING TPANSTORMS

1. IMAGE PROCESSINC TRANSFORM N• ES

Alpha Conditional Bisector

Array Grammars

Asynchronous Interaction

Background Subtraction

Bandwidth Compression Via Iterative Histogram Modification

Bernstein Polynomial Approximation

Best Plane Fit (BPF, Sobel, Roberts, Prewitt, Gradient)

Boundary Finder
Boundary Segmenter
Chain Code Angle Determiner

Closing (black and white)

Closure Operation

Connection Operator

Connectivity Number

Convex Hull

Convexity Number

Convolution Transform

Co-occurrence Matrix

Cumulative Angular Deviant Fourier Description

Cue Transform

Digitalization
I

Dilation (black and white)

Directional Gradient Transform
4

Discrete Cosine Transform

Discrete Fourier Transform
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Discrete K-L Feature Selection

Discrete Picture Tranform

Edge Detection by Gradient

Erosion (black and white)

Fields Without Interaction (black and white)

Fourier Feature Normalization

Fourier Features

Frei-Chen Thresholding Strategy

Geometric Correction

Gibbs Ensemble (black and white)

Gradient Directed Segmentation

Gradient Edge Operators

Grey Scale Correction

Grey Scale Histogram

Grey Scale Transformation

Haar Transform (Haar Functions)

Hadamard Transform (Walsh Transform)

Heukel Edge Operator

Hierarchical Edge Detection

Histogram Equalization

Hit and Miss Transformation

Hotelling Transform (Karhunen-Loeve Transform)

Hough Method for Line Detection

Image Coding by DPCM

Intersection Function (black and white)

Kirsch Operator

Linear Erosion

Linear Filtering

Local Neighborhood Transform

L-U Decomposition

Magnitude Gradient Transform

Markov Random Field (black and white)

Medial Axis Skeleton

Minkowski Functionals

Moments of Silhouette
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Morphological Covariance

Noise Removal by Smoothing

Opening (black and white)

Farallel Interactive Scene Labeling

Perimeter Estimation by Dilation

Planar Size Distribution

Pyramid

Projection Estimation by Dilation

Quad Trees (and Binary Trees)

Quantization

Random Field

Raster Tracking

Region Growing

Relax"ation Labeling

Rotation Invariant Field (black and white)

Sequential Thinning

Serial Relaxation

Shape Grammars

Simple Boundary Segmenter

Size Criteria

Size Distribution in Length

Skeleton

Skiz Transform (Exoskeleton)

Slant Transform

Spoke Filter

Stacked-Image Data Structure

Straight Line Detection by Linear Filter

Subtraction of Laplacian

Superslice

Superspike

Syntactic Noise Reduction

Template Matching

Template Matching by Cross Correlation

Thickening

Thinning (Morphological)
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Thresholding

Transform Enroding

Translation Transform

Tree Grammars

Tree Search Labeling Algorithm

Umbra Transform

Variable Sized Hexagons

Walsh Feature Representation

Zucker and Hammel Three Dimensional Edge Operators

2. SAXMLZS OF THm ZnG PROCESSING TRANSWORMS

a. Beat Plane Fit (3P2)

(1) Classification:

Edge Detection

(2) Purpose and Methodology:

The BPF technique is used primarily for edge detection. It

is employed on digital images by finding a plane which locally

best approximates this image. Local relative to a pixel will be

a neighborhood of a pixel; it may consist of three, four or

sometimes more pixels. The criteria of Best will be to minimize

some cost functional here, the Euclidean Norm. The coefficients
of the plane are indicative of the presence of a gradient. This

is determined by applying another functional.

(3) Mathematical Description:

Consider the 3 x 3 mask, illustrated below, for finding the
gradient at the center pixel whose grey value is x 0 . The grey
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value of the neighboring pi::els is denoted by %jjxa,...,:x.$ and

are also illustrated. The absolute location of the central pi:.:el

is (itj) e Z:.Zi therefore, its grey value x (iJ) .

Similarly, for the neighboring pi0els we have

x3 x x7

X'4 ..5 1

The plane Z - ax + by + c should be fitted to the pixels under

consideration. First consider a four pixel fit where the error e

is given by

e - (ai + bj + c -. 0)2 + (a(i-l) + bj + c - x.:) 2

+ (a(i-l) + b(j-l) + C - • 2 ) 2 + (ai + b(j-l) + C - 3.

Minimizing e with respect to a, b with c - 0 gives

't x3  41= 2

b -0-i~ w2 A

If the plane Z lx + mf + n were fit (using the same type of

error criteria) to all nine pixels after minimization, we obtain

1 + 7 -L 1 2 ~*I3 + '

M3m ½c ÷n : - '" m

A weighted fit could also be used. Specifically, we could find

the plane

Z p:: + qy + r

which is best with respect to the same criteria as above, but
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weighs the grey values :'?*'3, :':S, x7 by a fact of two. A

gradient is said to ex:ist when some functional (specified next)

* of a and b, or 1 and m, or p and q e:xceeds a threshold value.

The most commonly employed functions are:

the i; norm

(A - lal + JbI, B- III + Iml, or C - IpI + Iqi)

the 12 norm

(D - &a2 + b2, E - 42 + mi2, or F - + q2)

the 1. norm

(G - max: (IaI,Ibl), H - ma:.:(IlI, 1ml), I - max:. (IplIqI))

"Various versions of the Roberts, Prewitt and Sobel gradient

result by application of these different norms. This is

illustrated in the table below, using G, and Ga, as defined for

various templates.

For the Roberts Template

GI- :m0 - :2 and G2 '0x 1 - X3

For the Prewitt and Sobel templates

1
G +-W (:-:4 + w:*:S + X1) - (X2 + wX1 + X,)

1
G2 - 7 •(:. + w:%7 + :,) - (:e:2 + w:-:3 + -:*4)

with w = 1 and w - 2,respectively (Table D-1).

1

1 k



Table D-1. Gradient Operators and Their Norm

RMS Criteria max Criteria Magnitude

Roberts:

"D I jai + Ibi (I I+IG I)

Prewitts:

E - m G•TG- aax(IG1i, lG21) (1G•l+IG21)

Sobels:

"F 4 4Gj+G4 max(1GI1. 1G21) (IGII+IG 2 1)

Operators for this algebra involve the basis operations

previously described herein. The side conditions that the

operations obey follow in a natural manner, since all operators

are range or domain induced. However, this listing will be given

as part of the Phase II effort.

b. Dilate (Black and White)

(1) Classification:

Primitive Operation for Texture Analysis and Feature

Generation.

(2) Purpose and Methodology:

Dilation is the dual morphological operation of erosion.
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Whereas erosion is a shrinking transformation, dilation is

e:.:panding.

(3) Mathematical Description:

Let X C Z:.:Z and define

D.= {(Z 1 Z2) e ZxZ: (B + (Z1 ,Z 2 )) n X 0

if we define the Minkowski Addition as

X®(B - (XC®()B) c

where Xc denotes the complement of X, then we. have

Da(X) = X ®B

It is important to note that dilation is the dual of erosion in

the sense that:

Ds(X) = [E.(Xc) c

(4) Transformation Type:

Image to Image

Increasing

Invariant under Translation

(5) Effectiveness and Deficiencies:

Comments analogous to those for erosion can be made. In

particular, for the Euclidean counterpart: If T is an increasing,

translation invariant mapping on the power set of RxR, then ' is

* an intersection of dilations.

In fact,
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A

%P (A) r) A AB
REV *

where V* is the kernel of the dual mapping W*, which is defined

by

ql*(A) = [¶'(Ac)]c

Note that, although we have quoted this theorem of Matheron,

together with its erosion counterpart, for Euclidean images,

corresponding results do hold for ZxZ.

(6) Alternate:

Miller's Expand Transformation

(7) References:

Serra, p. 43.

Matheron, pp. 17, 221.

Miller, p. 16.

Watson, p. 4.

c. Discrete Fourier Transfozm

(1) Classification:

Image Transformation
I

(2) Purpose and Methodology:

The Discrete Fourier Transform (DFT) is one of the most used

transformations on images and is utilized in almost all facets of
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imaging, such as image restoration, enhancement, segmentation,

etc. It is often employed as an approximation to the actual

Fourier Transform operation for continuous images. It is

described herewithin as an e:x:act transform operating on an image

f given as an M by N matrix of complex numbers. In particular,

it is specified below as a special type of Discrete Picture

Transform.

(3) Mathematical Description:

In the conte::t of Discrete Picture Transform D, D: A -+ A

with D(f) = F = P.f.Q. The DFT F of f is obtained if one uses
P = Lm and Q = L. with Ljj.= je- m,n = 0,2,...,J.

The inverse operator D-1 (F) = f is called the inverse DFT. An

element of F is given by

M-I N-i

F (u,v) - NX X f (m, n) e-(Y+ 1f)]
mX0 n-0O

u = 0,1,2,...,M-1 and v=0,1,2,...,N-1.

The function F can be extended to F, which is doubly

periodic and defined over ZxZ, and is such that

F (u, -v) = F (u, N-v)

F(-u,v) = FI(M-u,v)

F(-u,-v) = F(M-u,N-v)

or, more succinctly

* F(aM + u, bN + v) = F(u,v)

a,b e Z. Using the fact that P and Q are invertible, similar
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properties on the original image f can be derived. The periodic

exctension property described above is one key in deriving

important consequences of the DFT for convolving images.

(4) Transformation Type:

Image to image

(5) Effectiveness and Deficiencies:

The DFT is one of the key transform techniques in digital

image processing; however, a large amount of computation must be

performed to perform the transformation. This is because complex

values and exponentials are needed. A further shortcoming is

that when the DFT is employed as a numerical approximation to the

True Fourier Transform. (Some type of error or bounds on the

error must be registered.)

(6) Alternate Versions:

Various fast versions of the DFT exist under the global name

Fast Fourier Transform of FFT. Some transforms exist which

provide the same or similar results as the DFT, along with error

bounds for use in approximation. One such algorithm is the

Accurate Fourier Transform AFT.

(7) References:

E. Hall, pp. 123-138.

A. Rosenfeld and A. Kak pp. 20-24.

R. Bracewell pp. 376-384.
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d. Discrete Picture Transform

* (1) Classification:

General Linear Image Transformation Schema

(2) Purpose and Methodology:

The purpose of this general transform is to provide a global

common setting for numerous important image processing

transforms. The Discrete Picture Transform is defined for image

f, given by a complex valued M N matrix where

f(0,0) f(0,1) ... f(O,N-l)f(1,0)

f

f(M-1,O) . f(M-1,N-1)

Let A denote the set of all such matrices. The entries of this
matrix are often real and denote grey values of f at designated
points. The transform is defined as a linear operation on

images.

(3) Mathematical Description:

The Discrete Picture Transform D is defined by: D : A -4 A,
where D(f) = F = Pef.Q, where P and Q are nonsingular,

complex-valued M x M and N x N matrices respectively, and are not
functions of the image being transformed. Specific transforms

arise by the way values are given for P and Q. The transforms

are often called separable, since P operates on the columns and Q

on the rows of f. The entries of the M x N matrix F are given by
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M-1 N-1

F(uv) = 7. P(u,m)f(m,n)(Q(n,v)
M-0 C-O

u = 0,l, ... ,M-I .

v

By pre-multiplying F = Pef-Q on the left by the inverse matrix

P-1 of P and post multiplying the ex:pression by Q-*, we obtain

f = p-1 F Q-i

We call this transform which takes the image F back into f the

Inverse Picture Transform and denote this by

D-1 : A -+ A where D-3 (F) = P-1 (F) Q-1

(4) Transform Type:

Image to Image.

(5) Effectiveness and Deficiencies:

Numerbus Image transform techniques, such as the Hadamard or

the Discrete Fourier Transform are representable, using this

schema. The Discrete Picture Transform is a Linear Operation,

viz, for any f 1 1 f 2in A and complex number a, D(af1 + f 2 ) - a
D(fj) + D(f 2 ). As a' consequence, nonlinear operations on images

cannot be employed using this schema.

(6) Alternate Versions:

Matrices could be labeled using different indices. More

importantly, the Discrete Picture Transform could be viewed as a

special case of more general nonlinear transforms. An instance

would be the Affine Transform

150



a, where a: A -- A and (f) - PefeQ + Q0 F

for some Q0 in A.

Here, the Inverse Affine Transform is such that

a-i : A -+ A and a-i (F) - p-1 r(F) - Q0]Q-i

(7) References:

A. R.senfeld and A. Kak pp. 19-20.

e. Erosion (Black and White)

(1) Classification:

Primitive Operation for Texture Analysis and Feature

Generation.

(2) Purpose and Methodology:

Erosion is one of the two basic morphological operations.

Its power lies in the multitude of higher level operations it

generates by the use of different structuring elements and by

iteration. Essentially, it operates by fitting small

structuring elements, usually convex, into a given black and

white figure.

(3) Mathematical Description:

An image F: ZxZ -4 {0, l} is equivalent to a set X C ZxZ,

i.e. F is the characteristic function of X For B c ZxZ, we define

* EB(X) = {(ZI,Z2)e Z:xZ: B + (ZI,Z2) C X). If we define the

Minkowski Subtraction as
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X®B - X + b

then we have

A
E3 (X) X®B

where

A

B- { - b b eB}

(4) Transformation Type:

Image to Image

Increasing

Invariant under Translation

(5) Effectiveness and Deficiencies:

In the present form, the transformation is limited to black

and white images. Nonetheless, its power is significant. To
emphasize its power, we note a result from its Euclidean

counterpart, which operates on images R x R -+ {0,l}. If T is an

increasing, translation invariant mapping on the power set of R x
R, then IF is a union of erosions. In particular

A
T (A) -UA®B

114V

where

V = {X C R.R*: 0 ge IF(.-)}

V being called the kernel of IF.
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In practice, successive erosions, each followed by a measurement,

generate morphological feature criteria which quantitatively

describe te.-:tural aspects of the image.

a (6) Alternate:

(a) Miller defines the Shrink Transformation

in terms of his general neighborhood transformations.

(b) Erosion operators can be defined for

discrete level grey-tone images.

(7) References:

Serra, p. 43.

Matheron, pp. 17, 221.

Miller, p. 13.

Watson, p. 6.

f. Hadamard Transform (Walsh Transfozm)

(1) Classification:

Image Transformation

(2) Purpose & Methodology;

The Hadamard Transform is employed in numerous areas of

Linage processing, such as image restoration, enhancement,

compression, segmentation, classification, etc. It is defined

below as a special case of the Discrete Picture Transform.

(3) Mathematical Description:

Consider the Discrete Picture Transform D, D: A -+A, where
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D(f) - F - P.f.Q, and P and Q are Hadamard matrices. Then D is

called a Hadamard Transform. A Hadamard matrix H44is a symmetric

J : J matri:.: consisting of l's and -l's, such that all rows

(columns) are mutually orthogonal, using the Euclidean inner or

dot product. The values of J.employed here will be a power of 2,

i.e., J - 2n for n - 1, 2,.... Furthermore, it is known that if

a Hadamard matri:.: of rank n > 2 exists, then n - 4m, where m is

an integer. Thus, the first interesting Hadamard matrix is H22,

where

Had (I -i

By using the Theorem: If Hjj is Hadamard, then

(Hj, Ha

H2J2J = IjI -H~)

is Hadamard, numerous other Hadamard matrices can be found. From

F = Hm f H,, we have the inverse relation

f 1 HM FHW

(4) Transformation Type:

Image to Image

(5) Effectiveness and Deficiencies:

Due to the nature of the P and Q mat:1 -, no multiples are

needed in determining the Hadamard Transform; only additions and

subtractions of the grey values must be employed. This is a very

computationally efficient transform.

(6) Alternate Versions:
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There are faster versions of the Hadamard Transform. The

Walsh Functions can be used to provide a transform equivalent to

4 the Hadamard Transform.

(7) References:

A. Rosenfeld and A. Kak pp. 24-28.

g. Hotelling Transform Karhunen-Loeve Transform

(1) Classification:

Image Coding

(2) Purpose and Methodology:

This image processing procedure is useful in numerous

applications of image processing, e.g., image compression,

restoration, enhancement, rotation, feature selection, etc.

All these applications are based on minimum variance

estimation criteria employed in deriving the Hotelling

Transform. The Hotelling Transform is a nonlinear

operation on images and, as a consequence, is not a Discrete

Picture Transform. Consider an f (i.e. a M by N matrix of reals)

fN I

where fl is 4 1 by N vector denoting the ith row of f, and the
prime denotes transpose. Represent this image as an M.N by 1

column vector x, i.e.,
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f2

f N

The Hotelling Transform of x (or, equivalently, of the image f

represented as a linear list :.:) is

y " A: + Q0

where A is a J by N.M matrix described below, and Q0 is a

1 vector 1 ! J 1 NM. This transform appears to be Affine;

however, this, too, is not the case, for in practice A and Q0 are

complicated functions of x (or f). The matrices A and Q0 involve

moments from x where x is viewed as a random vector.

(3) Mathematical Description:

Consider K (*a 1) M by N real valued images flf2,'..,fk.

Let the K column vectors .,xk be the linear list

representation of these images as described above. Assume that x

is an M N by 1 random vector and the probability that x equals :x,

is 1/K, i.e. P(x x•:) - l/K, i - 1,2,...,It. Thus all the xj are

equilikely realizations of x. As usual, let x denote the average

or mean vector and so

Also, let R be Lhe covariance matrix for the process

K

We will assume that R is full rank. Since R is symmetric and

real, all the eigenvalues are real and there is a internormal
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basis of associated eigenvectors. Let Aj be the matrix whose
rows consist of the normalized eigenvectors corresponding to the

* J largest eigenvalues. The integer J is a parameter here and
different Hotelling Transforms are defined as a consequence. We
have as the Hotelling Transform

y- Aj(x - x ) - -AX

It should be noted that yj is a random vector; furthermore, for

J - N -M, we use Am - A and y. " y

Thus, in this case, we have

y - Ax. -

This MeN by 1 vector y could be interpreted as an image g. To
see this, we :epresent y as a M by N vector

f2

where each gi is an N x 1 column vector. Then the image g

is given by

9 9;
92

99

15
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(4) Transformation Type:

Image to Image

Image to Vector

(5) Effectiveness and Deficiencies:

The Hotelling Transform utilizes orthonormal bases and

therefore is distance preserving. It is derived by minimizing a

mean square type error, and, therefore, it is optimal under this

cost function. The calculations involved in producing these

transforms are computationally complex. The procedure described

above was e:-act. Often one performs this procedure using

:'-'2........,-":k as samples from a (larger) population. In this case

= E (x)

and

R=E[x-x) (xE-x' ) }

should be employed, and the values of x and R given in the

Mathematical Description are statistics and therefore only

approximations to the true parameters x and R.

(6) Alternate Versions:

Numerous versions exist, although none which are fast. They

are recognized under the following names:

Discrete Karhunen-Loeve Transforms, Principal Component

Transforms and Eigcnvector Transforms. Some of these methods do

not utilitize the term Q0 - Ai x

(7) References:

M. Kendall and A Stuart pp. 292-323.
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E. Hall, pp.115-122.

J. Tow, R. Gonzalez, pp. 271-283.

h. Opening (Black and White)

(1) Classification:

Feature Generation and Filtering, Size and Shape

Description.

(2) Purpose and Methodology:

The opening is essentially a fitting operation. The

opening of a domain X is the region swept out by the translates

of the structuring element B. It smooths the contours of X,

eliminates negligible components, and suppresses narrow dendritic

e:x:tensions. Iterations of openings play a crucial role in

generating size and shape descriptors.

(3) Mathematical Description:

For a structuring element B and X c ZxZ, we define the

opening of X by B to be:

x= (X-B) B.

Equivalently,

XB = [B + y :B + y cX]

(4) Transformation Type:

Image to Image

Increasing,

Anti-e:.:tensive: XBC X

159



Idempotent: (X8)8 =

(5) Effectiveness and Deficiencies:

If we consider the typical morphological feature description

operation,

Image -• Image -4 Parameter,

the application of successive openings at the Image -+ Image stage

is determined by the function of the parametric measurement. For

e::ample, if we open by ever larger sets of a particular class,

more and more resolution of the micro-texture will be filtered.

It is precisely the measuremeht of the filtered micro-texture

which is descriptive of size and shape. The effectiveness of the

opening, or its non-effectiveness, is thereby determined, at

least insofar as any particular application is concerned.

It should be noted that openings characterize an important

class of morphological mappings (on Euclidean Images): If T is

translation invariant, increasing, anti-extensive and idempotent,

'f: p(R x R) -3 p(R x R),

then there exists a class B0 C p(R x R) such that

T(A) = UJ{A : B e Bo I

and conversely, where we let p(R x R) denote the power set.

(6) Alternate:

(7) References:

Serra, p. 50.
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Matherson, pp. 18, 190.

Watson, p. 6.

i. Size Criteria

(1) Classification:

Size (and ipso facto shape) criteria-general analysis.

(2) Purpose and Methodology:

The purpose of any given size criteria is to create a

distribution associated with the image which reflects its size

and shape characteristics, from a textural level. The methodology

is as follows:

(a) Every operator A will denote a parametized family

of operators A, each of the following form:

A . •%, X > 0

where

(0, 1)~ -4 (0, 1) ,,: R

The family (WX ) will be a granulometry (see (b))

and g will usually be a Minkowski functional.

(b) A granulometry () on the power set of Z :: Z must

satisfy:

(1) 'X(A) c A for all A

(2) A C B -> TX (A) caPX(B)

(3) 'IXe 'Pp ='F4UP(X') X'4L> 0
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The following theorem of Matheron is important in this

regard:

), , ' > 0 is a granulometry iff

1. VX > 0,P% is increasing, idempotent and anti-ex:tensive,

and,

2. )Žj±>Orimplies B~cB., where

B% denotes the class of 'P.

3. In morphology, one usually digitalizes by

utilizing a hexagonal grid. It is important to keep

this in mind when discussing directions. Of

course, the digital theory is applicable to Z x Z in

general, and, hence square grids in particular.

(3) Mathematical Description:

Depends on particular granulometry and particular measure.

(4) Transformation Type:

Image to Real
Image to Distribution

(5) Effectiveness and Deficiencies:

Effectiveness depends upon particular operator and the goal

desired. In all cases, the choice of the structuring element is

crucial. Moreover, interpretation depends upon expertise. It is

here when an expert system would be of fundamental importance.

(6) Alternate:

(7) Reference:
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Matheron, pp. 24, 192.

j. Thresholding

(1) Classification:

Segmentation

(2) Purpose and Methodology:

In thresholding, a figure, or an interesting feature, within

an image is separated out from the image by the production of a

new image in which the figure is black and its background is

white. Variants of this methodology consist of whiting out or

blackening only portions of the image, while leaving other grey

levels intact.

(3) Mathematical Description:

In general, a thresholded image X results from an original

image X by:

1 if X(i,j) E A
X^ (i~j)

0 if X(i,j) e A

where A is some subset of the grey scale. In particular,

thresholding is usually defined in the case where

A { Z:Z }

In this instance, we defined

I O if X(i,j) < k
X x (ij) i if X (i,j) 2!.
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Whereas, in thresholding proper,

XeRzxz -+ X^e{O, 1}ZZZ

in semi-thresholding,

Xe Rzz -+ X^9 Rz~z

where the actual portion of the grey-scale (A) utilized is reduced

via

X{(ij) if X(i,j) =A
XX (itj) =

'0 if X(ij) E A

For a simple threshold, X, selection is crucial if the object

is to be clearly delineated. Very often a strongly bimodal

histogram indicates a sharp 'figure and ground distinction;

however, this is certainly not always the case. Therefore, the

typical method of choosing between the modes must be deter mined

judiciously.

(4) Transformation/Type:

Image to Image

Usually: RZXZ -- {0,1}ZZ

(5) Effectiveness and Deficiencies:

As has been hinted above, figure extraction -by bimodal

thresholding is problematic. One need only consider the

instances of shadows or high frequency salt-and-pepper noise. In

many instances, feature or figure extraction may require

pre-processing; i.e.,
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A
X E- RZYZ -- X e RZcZ.4 Xh e {0, 1}zz

A typical instance might be noise reduction by smoothing,

followed by thresholding to separate the figure from the ground.

In any event, the choice of threshold is the most crucial aspect

of thresholding and several methods, including bimodal selection,

are -available. Should the threshold value ) be too small or too

high, a noisy image will likely result.

One possibility for threshold selection is local

thresholding. For e:x:ample, one portion of an image might be

lighter than another. In this case, no single value for X would

do. It may be possible to partition the image, threshold

locally, and then smooth the resulting. thresholded and

partitioned image. Note that, in this instance, the smoothing

simply obviates false edges that occur along partition

boundaries; it does not visually smooth since the thresholded

image may be black and white.

(6) Alternates:

(a) Minimum Error Thresholding

(b) Variable Thresholding

(7) References:

Rosenfeld, pp. 258-269.

Pavlidis, p. 66.

Serra, pp. 433-457.
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APP] IDIX Z

A ]BRIE DISCMSSION GI NMNY SORT=Z ALGWA

A many sorted algebra is a very general algebraic structure.

It is a generalization of a Universal Algebra and, consequently,

it is a super structure for groups, rings, integral domains,

lattices, and all other structures definable within the Universal

Algebra framework. In short, a Universal Algebra consists of

three ingredients. The first is a single non-empty set of

elements; the second is various operators which map elements from

these sets into other elements in this set, and the last is a

collection of side conditions or equational constraints, such as

the commutative, associative, or distributive laws, which the

operators obey. In a many-sorted algebra, more than one type of

set of elements is allowed. The operators in this type of

algebra map elements from numerous sorts of sets into an element

in some sort of set. A variety specification is also allowed,

u-sing equational constraints.

A most elegant and basic eX:ample of a many-sorted algebra is

a vector space. Here, there are two sorts of sets, namely,

vectors and scalars. Numerous operators, such as vector addition

and multiplication of a vector by a scalar, are among the

operators in this algebra. Furthermore, -various side conditions

such as the commutative law for addition and various distributive

laws are well-known for a vector space structure.

The application at hand, namely the imaging algebra being

proposed, is a special type of many sorted algebra. Among the

sort of sets involved are images, reals, and integers. The

operators for this algebra involve the basis operations discussed

in paragraph 2 and are described herein. The side conditions

that the operations obey follow in a natural manner, since all

operators are range or domain induced. However, this listing

will be given as part of the Phase II effort.
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